

Clean Energy Communities Energy Study

Prepared for:

Village of Philmont

Village Hall

124 Main Street, Philmont, NY 12565

Audit No: CEC-400097-1-S - Village Hall

Submitted by:

L&S Energy Services 58 Clifton Country Road, Suite 203 Clifton Park, NY 12065

Date: 12/27/2022

For questions regarding this report, please contact <u>cec@nyserda.ny.gov</u>.

We hope the findings of this report will assist you in making decisions about energy efficiency improvements in your facility. Thank you for your participation in this program.

NOTICE

This report was prepared pursuant to the Flexible Technical Assistance Program (Hereinafter "FlexTech") administered by the New York State Energy Research and Development Authority (hereinafter "NYSERDA"). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it by NYSERDA or the State of New York. Further, NYSERDA and the State of New York make no warranties or representations, expressed or implied, as to the fitness for a particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, energy savings, or other information contained, described, disclosed, or referred to in this report. NYSERDA and the State of New York make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately-owned rights and will assume no responsibility for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, disclosed, or referred to in this report.

State of New York

Kathy Hochul, Governor

New York State Energy Research and Development Authority

Consultant Disclaimer

The opinions expressed in this report do not necessarily reflect those of L&S Energy Services, C.J. Brown Energy P.C., The Daylight Savings Company, or Taitem Engineering P.C. (the Consultants), and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it by the Consultants. Further, the Consultants make no warranties or representations, expressed or implied, as to the fitness for a particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, energy savings, or other information contained, described, disclosed, or referred to in this report. The Consultants make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately-owned rights and will assume no responsibility for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report.

This report was prepared by:

L & S Energy 58 Clifton Country Road, Suite 203 Clifton Park, NY 12065 (518) 383-9405

Table of Contents

Executive Summary	1
Present Energy Use and Cost	2
Benchmarking Your Building	3
Project Summary Table	4
Note on Energy Project Implementation Costs	5
Greenhouse Gas Reductions for the Recommended Measures	6
Assistance for Implementation of Recommendations	6
COVID-19	6
Energy Efficiency Measure Descriptions	7
EEM-1 Interior Lighting Retrofit	7
EEM-2 Improve Temperature Control	8
EEM-3 Insulate Building Envelope	9
EEM-4 Weather-Stripping And Caulking	10
EEM-5 Install Insulated Doors	11
EEM-6 Install Double Glazing	12
EEM-7 Insulate Heating And Domestic Hot Water Pipes	13
EEM-8 Install A More Efficient Boiler	14
EEM-9 Replace Air Conditioners	15
EEM-10 Turn Off Unused Refrigerators	16
Building Electrification Measures	17
BE-1 Install Clean Heating System - Ground Source Heat Pump	18
BE-2 Install A Heat Pump Water Heater	19
Existing Conditions	20
Lighting Systems	21
Heating Ventilating and Air Conditioning Systems	21
Water Heating System	22
Other Energy-using Systems	22
Appendix A	24
Equipment Inventory	24
Appendix B	25
Energy Use and Cost Summary	25

Utility Bill Data	25
Appendix C	28
EEM Calculations	28
Appendix D	41
Assumptions/Data Used to Develop Energy and Dollar Savings Figures	41
Appendix E	45
Clean Heating and Cooling Technology Overview	45
Appendix F	49
Energy Savings Summaries	49

Executive Summary

This study was performed to understand how your facility is currently using energy and identify ways to reduce energy use and operating expenses.

No specific areas of concern were identified by the owner for evaluation.

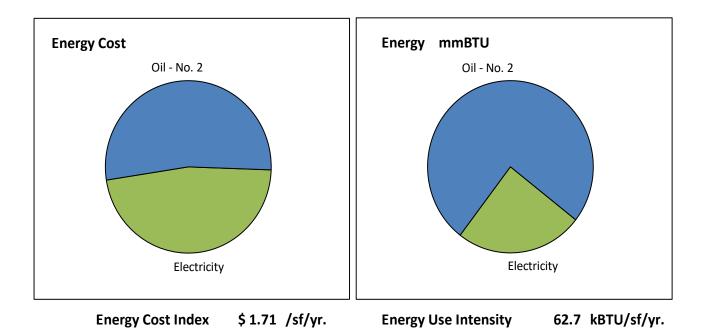
The following energy efficiency measures (EEMs) and observations to reduce energy use were identified during the site visit:

- Interior Lighting Retrofit replace all fluorescent and incandescent lamps with LED
- Improve Temperature Control install new wi-fi thermostats and implement temperature setbacks
- Insulate Building Envelope Install wall and roof insulation to current code levels
- Weatherstripping and Caulking Replace weatherstripping and install door sweeps on old doors (that do not need replacement)
- Install Insulated Doors Replace one door that has excessive wear and tear
- Install Double Glazing Replace the single pane windows, and weatherstrip leaky double pane windows
- Insulate Heating and Hot Water Pipes Exposed piping should be insulated for the heating plant and the domestic hot water system
- Install a More Efficient Boiler Replace the existing boiler with a condensing unit
- Replace Air Conditioners Install new high efficiency split system and window AC units per Energy Star compliance
- Turn Off Unused Refrigerators Consolidate the refrigerators in the Firehouse (and other offices if possible)
- Install Ground Source Heat Pumps Replace the fossil fuel system with a geothermal based electric heat pump system.
- Install a Heat Pump Water Heater Replace the existing 40-gallon unit with a heat pump equivalent

These Energy Efficiency Measures are summarized in the Project Summary Table below and discussed in more detail in the Energy Efficiency Measures section of this report.

Present Energy Use and Cost

The energy use for your facility has been compiled to calculate the Energy Cost Index and the Energy Use Intensity.


- The Energy Cost Index (ECI) is the total cost of energy divided by the conditioned floor area and is shown as dollars per square foot per year.
- The Energy Use Intensity (EUI) is the total heat content of energy divided by the conditioned floor area and is shown in units of one thousand Btus (kBtu) per square foot per year.

Energy Cost Index

Electricity	\$ 5,597	\$ 0.80	\$/sq.ft./year
Oil - No. 2	\$ 6,314	\$ 0.91	\$/sq.ft./year
Total Cost	\$ 11,911	\$ 1.71	\$/sq.ft./year

Energy Use Intensity

Electricity	108	mmBtu	15.6	kBtu/sq.ft./year
Oil - No. 2	328	mmBtu	47.1	kBtu/sq.ft./year
Total Energy Use	436	mmBtu	62.7	kBtu/sq.ft./year

Benchmarking Your Building

The EPA's ENERGY STAR Portfolio Manager website allows you to upload energy use information and compare your energy use to that of other buildings of similar use. Portfolio Manager generates a benchmark score that indicates your performance. A benchmark score of 50 indicates average performance while a score of 75 or higher would earn the Energy Star designation. You can use the website to track your energy use over time and document the success of your energy conservation efforts.

You can find the Portfolio Manager at:

https://www.energystar.gov/buildings/facility-owners-and-managers/existingbuildings/use-portfolio-manager

	Energy Efficiency Measures				Savings & Cos	t
EEM #	Measure Status	EEM Description	Reduction in Greenhouse Gas Emissions (Lbs. CO2e/Year)	Total Annual Savings	Install Costs	Simple Payback (years)
EEM-1	R	Interior Lighting Retrofit	1,424	\$ 444	\$ 5,954	13.4
EEM-2	R	Improve Temperature Control	8,305	\$ 982	\$ 1,000	1.0
EEM-3	RS	Insulate Building Envelope	19,751	\$ 2,337	\$ 202,559	86.7
EEM-4	R	Weather-Stripping And Caulking	997	\$118	\$ 340	2.9
EEM-5	RNE	Install Insulated Doors	382	\$ 45	\$ 1,500	33.2
EEM-6	R	Install Double Glazing	5,359	\$ 634	\$ 4,716	7.4
EEM-7	RS	Insulate Heating And Domestic Hot Water Pipes	417	\$ 49	\$ 1,130	22.9
EEM-8	NR	Install A More Efficient Boiler	7,393	\$ 874	\$ 14,000	16.0
EEM-9	NR	Replace Air Conditioners	471	\$91	\$ 6,667	73.6
EEM-10	R	Turn Off Unused Refrigerators	661	\$ 80	\$0	0.0
		Total of Recommended Measures:	17,127	\$ 2,303	\$ 13,510	5.9

Measure Status Explanation:

(I) - Implemented: Measure has been installed

(R) - Recommended: Energy saved with a reasonable payback (within measure life)

(NR) - Not Recommended: When payback exceeds measure life and equipment is not at end of life

(RME) - Recommended Mutually Exclusive: Energy is saved and recommended over other options for a particular measure

(ME) - Mutually Exclusive: Non-recommended option(s) to a Recommended Mutually Exclusive (RME) measure

(RNE) - Recommended Non-Energy: Recommended based on other, non-energy factors such as comfort, water savings or equipment at end of life

(RS) - Recommended for Further Study: For measures that require analysis beyond the scope of this program.

(BE) – Building Electrification: Measures that should be considered based on greenhouse gas reductions, eliminating on-site use of fossil fuels, or other sustainability factors

	Building Electrification Measures				\$ S	avings & Cost	•	
EEM #	Measure Status	Building Electrification Measure Descriptions	Reduction in Greenhouse Gas Emissions (Lbs. CO2e/Year)	Total Annual Savings	Install Costs	Simple Payback (years)	Estimated Incentives	Simple Payback after incentives
BE-1	RS	Install Clean Heating System - Ground Source Heat Pump	28,367	\$ 2,944	\$ 184,050	62.5	\$ 20,399	55.6
BE-2	NR	Install A Heat Pump Water Heater	569	\$ 73	\$ 4,500	61.9	\$134	60.1
		Total of Recommended Measures:	0	\$ O	\$ 0	0.0	\$ 0	

Simple Payback Period is the length of time it will take to recover the initial capital investment from the energy savings of the new equipment. The Simple Payback Period is calculated by dividing the initial installed cost by the annual energy cost savings. For example, an energy-saving measure that costs \$5,000 and saves \$2,500 per year has a Simple Payback Period of \$5,000 divided by \$2,500 or 2 years.

Note on Energy Project Implementation Costs

The "Project Costs" shown in this report for each Energy Efficiency Measure represent an initial estimate of the implementation cost. Unless otherwise noted in the Energy Efficiency Measure description, these costs reflect a preliminary estimate of material and labor. There may be other variables associated with your specific project that will impact the true project costs that the study may not capture. Other external factors that may impact true project costs and payback include material availability, vendor scheduling, access within the facility, general inflation, available measure incentives, and other unknown factors and conditions. For measures which significantly impact your building's usage, it is also important to determine any potential utility rate and/or tariff changes, those of which are beyond the scope of this report. We recommend that you seek several quotes from qualified vendors prior to implementation.

Greenhouse Gas Reductions for the Recommended Measures

Reducing your energy use will reduce the release of greenhouse gases associated with the use of fossil fuels and the production of electricity. If the measures recommended in this report are implemented, the following reductions of greenhouse gases can be expected:

Electricity	2,553	kWh =	2,962	pounds CO2 equivalent
Oil - No. 2	630	gal. =	14,166	pounds CO2 equivalent
			17,127	pounds CO2 equivalent
			19.0%	reduction

Emissions factors are used to translate the energy savings data from energy efficiency and renewable generation projects into annual GHG emissions reduction values. NYSERDA uses emission factors derived from U.S. Environmental Protection Agency (EPA) emission coefficients to calculate emissions from onsite fuel. The CO2e values represent aggregate CO2, CH4, and N2O emissions.

Assistance for Implementation of Recommendations

This study provides recommendation on specific actions to take to increase energy efficiency; the next step is implementing the recommendation(s). Complimentary assistance with implementing energy efficiency recommendations is available.

We can assist with identifying utility company incentives and various financing options available for energy efficiency improvements, such as GJGNY Loans or Commercial Property Assessed Clean Energy (CPACE) on bill Financing.

Please contact the Green Jobs Green New York Program coordinator for assistance:

Michelle Wooddell 1-888-338-0089 Info@NYEnergyStudy.com

COVID-19

NYSERDA encourages study participants to review COVID-related building operation guidelines published by New York State, ASHRAE and other trusted sources, as applicable. Links to these resources are included below along with a link to the FlexTech Program Indoor Air Quality (IAQ) effort, which is focused on the evaluation of filtration, ventilation, and building operation optimization measures as well as Ultraviolet Germicidal Irradiation (UVGI) in response to the COVID-19 crisis.

- New York State: <u>https://forward.ny.gov/</u>
- ASHRAE: <u>https://www.ashrae.org/technical-resources/resources</u>
- FlexTech Program IAQ Effort: <u>https://www.nyserda.ny.gov/All-Programs/Programs/FlexTech Program/Indoor-Air-Quality</u>

Energy Efficiency Measure Descriptions

EEM-1 Interior Lighting Retrofit

Electric Savings:	\$ 540	1,928 2.1	kWh per year kW demand
Fuel Savings:	(\$ 96)	(5.0)	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 444		
Project Cost:	\$ 5,954		
Simple Payback:	13.4	years	

Introduction:

Lighting usually represents a major portion of a facility's electricity use, and given the continuous hours of use, it contributes to the peak electric demand each month. Taking steps to improve the efficiency of your lighting will reduce both the total electric energy used and lower your peak electric demand. Lighting retrofit projects now consist of installing Light Emitting Diode, or LED, light sources in all fixtures. Some fixtures, such as indoor fluorescent fixtures, can be retrofitted to use T-8 replacement lamps, but most fixtures should simply be replaced with LED fixtures. Energy savings of 50% are common when replacing fluorescent and HID light sources with LED sources.

LED light sources for interior applications should list their color on the label; this is expressed in degrees Kelvin, or °K. Lights with higher values will be bluer in color and may not be appropriate for indoor use. Look for values between 3500 and 4000°K for "cool white" light. For spaces where a warmer color of light is desired, select lights with values between 2700 and 3000°K.

Recommendation:

Retrofit interior fluorescent fixtures and replace other fixtures as indicated in the lighting calculations and the Equipment Inventory, both of which may be found in the Appendix.

LED lamps and fixtures should be Energy Star labeled or listed with the Design Lights Consortium (DLC). Your utility incentive program may have other requirements that must be met in order to qualify for incentives.

EEM-2 Improve Temperature Control

Electric Savings:	\$8		55 0.0	kWh per year kW demand
Fuel Savings:	\$ 974		50.6	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 98 2			
Project Cost:	\$ 1,000			
Simple Payback:	1.0	years		

Introduction:

Proper temperature control is important in order to minimize energy costs. Maintaining space temperatures within a reasonable range during occupied periods and reliably reducing the amount of heating and cooling energy during unoccupied periods should be the goal for your temperature control system.

This building is unique in the fact that most of the space has low to no occupancy or variable occupancy. The heating plant thermostats are rotary dial with manual controls. Some of the low occupancy spaces had lower thermostat settings than that of the occupied spaces, such as the Hall (60 °F) and Court (63 °F) as compared to the Office (66 °F). On the other hand, the Firehouse was set higher (68 °F) than the Office despite have minimal foot traffic.

Recommendation:

Digital Wi-Fi thermostats should be installed so that the unoccupied spaces can be set to a low temperature during the heating season. A facility manager should be in charge of checking that the thermostats are properly programmed without manual overrides from staff, volunteers, and other community members who enter the building.

This calculation provides an example of the potential savings for basing the average building temperature setpoint at 66 °F in heating mode with a 4 °F average setback. This measure also estimates savings for the Firehouse Kitchen AC, which has local controls. Currently, the unit remain on throughout the summer. It is recommended to remind occupants to turn off the unit when they leave the space.

Setbacks can be even deeper than in this estimated calculation. However, there will be a sweet spot on how low the space temperatures can be achieved and how fast they can be brought back when needed. Because there is a lot of exposed piping and heat transfer from each story, the facility managers should conduct functional testing to determine these thresholds.

The new thermostats should be installed in the Firehouse, Firehouse kitchen, Office, Hall, and Court. Be sure to remove the older thermostats (currently there is a defunct rotary thermostat right next to the operating thermostat in many of the zones).

EEM-3 Insulate Building Envelope

Electric Savings:	\$ 68		484 0.0	kWh per year kW demand
Fuel Savings:	\$ 2,269		117.8	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 2,337			
Project Cost:	\$ 202,559			
Simple Payback:	86.7	years		

Introduction:

Heat moves from areas of high temperature to areas of low temperature. As the temperature difference between a heated and an unheated space becomes greater, so does the rate of heat transfer. Insulation reduces the rate of heat transfer by filling the space with material that is less conductive than what is currently there. The effectiveness of insulation is measured by R-value, which is the resistance to heat transfer. As the R-value increases, the rate at which heat is transferred decreases.

Recommendation:

This building has masonry walls and a flat roof. The walls have no insulation, and the roof was likely last replaced around 30 years ago, which would indicate that it may be at the end of its useful life.

Insulating this building will require significant work. If the walls were to be insulated from the interior, the walls will need to be brought in with wood framing, electrical work, insulation, drywall and paint. This could be an issue since some of the offices already appear to be small and cluttered with equipment and files.

Exterior insulation, however, will not disrupt operations. Installing an exterior insulating system will transform the look of the building from concrete to a synthetic stucco type of material. Depending on the materials, the system may require a specialty license. Thus, the materials and labor associated could be more expensive.

Further study should be evaluated to improve the wall and roof insulation to current code levels. When undergoing a project of this magnitude, there should also be input from design engineers who can integrate solar and geothermal heating/cooling systems into the design. This would take advantage of simultaneous work, and lower potential overall costs.

The calculation estimates are based on improving the wall insulation from R-5 to R-19, and the roof insulation from R-19 to R-39.

EEM-4 Weather-Stripping And Caulking

Electric Savings:	\$0	0 0.0	kWh per year kW demand
Fuel Savings:	\$ 118	6.1	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 118		
Project Cost:	\$ 340		
Simple Payback:	2.9	years	

Introduction:

Sealing the cracks between windows and wall openings will reduce the amount of unwanted outside air infiltration into conditioned spaces. The elimination of infiltration or drafts makes occupants feel more comfortable and reduces heating and cooling costs. Caulking and weather-stripping are cost effective ways to reduce infiltration and to tighten the building envelope.

Recommendation:

This measure is specifically for replacing weatherstripping and door sweeps on the front entrance doors (Office/Court), and the Village Hall side door to eliminate infiltration. Subsequent measures will detail potential savings for replacing doors and windows while simultaneously addressing any infiltrative savings.

In addition to the three doors, two window AC units remain in place throughout the year. Infiltration can occur around the units, but also through the unit. The units can also be damaged by snow and also have mold grow, which can lead to poor indoor air quality. It is recommended that these units are removed in the winter.

EEM-5 Install Insulated Doors

Total Annual Savings: Project Cost:	\$ 45 \$ 1,500		
Fuel Savings:	\$ 45	2.3	MMBtu fuel per year Oil - No. 2
Electric Savings:	\$0	0.0	

Introduction:

Single pane wooden frame or metal frame doors can be very inefficient. Heat loss due to conduction through single pane glass can be very high. Also heat loss due to air infiltration past loose fitting or worn-out frames can increase the cost of energy to heat this air. Drafts can also occur causing discomfort to occupants. The installation of insulated replacement doors will reduce these heating loads.

Energy efficient doors are built with thermal breaks and insulated cores to reduce conduction heat losses. Weather stripping along the perimeter of the door minimizes the infiltration of unconditioned air.

Recommendation:

The rear door to the heated vestibule leading to the firehouse and the stairs has significant wear and tear. It does not close on its own. A new high efficiency polyurethane insulated steal door, or equivalent is recommended for replacement.

The estimated cost relative to the payback does not make sense to replace solely for energy efficiency reasons. However, because the door is damaged and does not close, it should be replaced for non-energy reasons.

EEM-6 Install Double Glazing

Electric Savings:	(\$ O)	0 0.0	kWh per year kW demand
Fuel Savings:	\$ 634	32.9	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 634		
Project Cost:	\$ 4 ,716		
Simple Payback:	7.4	years	

Introduction:

Single pane wooden or metal frame windows can be very inefficient. Heat loss due to conduction through single pane windows can be very high. New windows utilize two panes of glass instead of one. Glass performance is measured in two ways Solar Heat Gain Co-efficient (SHGC) or Visible Transmittance (VT). SHGC is the amount of solar gain transmitted through a window into the building. VT refers to the amount of visible light that moves through the glass from exterior to interior. These two factors can be altered for a higher performing window by adding Low-E coatings and spacers with gas. The overall thermal performance of windows is generally assigned a u-value. This measurement considers all parts of a window. These parts include the frame, sash, and glass. The installation of windows with double glazing will reduce infiltration and conduction losses.

Recommendation:

Install new double-glazed windows with low-e coatings. Be sure that windows are fully caulked on the exterior and interior where they meet the existing building structure. The EPA and DOE have developed stringent standards for windows. Windows that meet these standards can earn the Energy Star Label. Replacement windows should bear the Energy Star label.

This measure provides an estimate of savings for 11 new windows in the firehouse that are single pane and do not fit frames, as well as new weatherstripping for the double pane windows in the Village Office that staff state leak.

Further study is recommended for diagnosing the issue with the leaking windows in the Office. If the frames need replacement, then the cost would increase perhaps causing the potential payback time to be longer.

EEM-7 Insulate Heating And Domestic Hot Water Pipes

Electric Savings:	\$ 2		15 0.0	kWh per year kW demand
Fuel Savings:	\$ 47		2.5	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 49			
Project Cost:	\$ 1,130			
Simple Payback:	22.9	years		

Introduction:

Heat is distributed through the building by pipes containing hot water or steam. Heating distribution system pipes lose heat to the surrounding space. If the heat is lost to an area that does not require heating, the drop in system efficiency can be significant. Un-insulated pipes in conditioned space may also overheat the space, wasting energy and causing comfort problems. All heating distribution system pipes located in unconditioned space should be insulated.

Domestic hot water (DHW) is water that is heated for hand washing, showering, dish washing, laundry, etc. Domestic hot water pipes lose heat to the surrounding space. This loss is significant in facilities with recirculating hot water systems, or in facilities that use hot water for a large portion of the day. In a recirculating system, all domestic hot water pipes should be insulated. In a non-recirculating system, domestic hot water pipes within eight feet of the water heater should be insulated.

Recommendation:

The hot water heating piping in the boiler room is totally uninsulated. There is an estimated 30' of 2" copper pipe for this space. There are also uninsulated pipe runs from the boiler room across the firehouse with an estimated 100' of 2" copper that has been painted.

The domestic hot water maker is also in the boiler room. It has insulation for the first 8' feet or so, but there is another 15' of exposed pipe. Since the boiler room has large fixed louvres, the heat can be lost before it gets to the conditioned space.

Further study is recommended for inquiring with a contractor who can more effectively measure the length of pipes, their circumference, and the quantity of elbows and tees that can be insulated along with the cost to implement.

EEM-8 Install A More Efficient Boiler

Electric Savings:	(\$ 0)		0 0.0	kWh per year kW demand
Fuel Savings:	\$ 874	4	5.4	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 874			
Project Cost:	\$ 14,000			
Simple Payback:	16.0	years		

Introduction:

Boiler efficiency is determined by the efficiency of the boiler burner and heat exchanger, jacket heat losses, flue losses, and boiler sizing relative to the heating load. Boilers with atmospheric burners experience greater flue losses than power burners during off cycles when the burner is not firing. Boilers that are oversized spend more time in standby mode, increasing the impact of high off-cycle flue losses. These types of boilers perform at overall efficiencies significantly lower than their nominal thermal efficiency (Et), which is measured at a steady state of boiler operation. Boilers under 300,000 BTU input are rated using the annual fuel utilization efficiency, or AFUE. A boiler's AFUE rating assumes that it is properly sized for the building it serves. Boilers that are over-sized and poorly-controlled will perform less efficiently than the published AFUE.

Non-condensing boilers are limited to thermal efficiencies up to ~85% Et if equipped with power burners and low-mass heat exchangers; 80% Et boilers are more common. Condensing boilers are designed to cool flue gases to the point where water vapor produced in the combustion process condenses. The thermal efficiency of a condensing boiler depends on the entering water temperature, with lower temperatures yielding higher efficiency. Condensing boilers can achieve thermal efficiencies between 88% and 98%.

Recommendation:

The new boiler should be a condensing design with a modulating burner and outdoor reset control. Perform complete load calculations for the building and size the new equipment according to the load calculations, and not according to the size of the equipment scheduled for removal. Revise the near-boiler piping to ensure the boiler entering water temperature is as low as possible to maximize efficiency.

This calculation uses a rated combustion efficiency for the existing unit at 88% going to 96% for a condensing unit.

If a new boiler has an oil-fired burner, the payback is estimated at 16 years. If the Village were to install a propane fired unit, the boiler may require about 1/3 more gallons due to the difference in heat content between oil and propane. Therefore, if the price of propane is not 1/3 less than fuel oil, then the payback on that boiler would be longer. Overall, this measure is not recommended at this time.

EEM-9 Replace Air Conditioners

Electric Savings:	\$ 91	406 0.6	kWh per year kW demand
Fuel Savings:	\$ 0	0.0	MMBtu fuel per year
Total Annual Savings: Project Cost: Simple Payback:	\$ 91 \$ 6,667 73.6	years	

Introduction:

Air conditioning units that are over 15 years old may use reciprocating compressors and obsolete refrigerants. Current models use reliable scroll compressors and modern refrigerants to meet today's more stringent efficiency requirements. Replacement models are rated with an Energy Efficiency Ratio, commonly called EER. The higher the EER, the more efficient the unit. SEER is the Seasonal Energy Efficiency Ratio, which indicates the average EER over the course of a cooling season. The SEER will be higher than the EER for a given piece of equipment, so be sure to compare products using the same measurements.

Recommendation:

This calculation provides an example of installing new split system and wall AC units for the Village Office, Court, and Firehouse. The existing units have variable sizes and efficiencies, as can be observed in Appendix A and the calculations. The new equipment comparison is based on the Energy Star highest efficiency listings.

This measure is based on an in-kind replacement. The estimated implementation costs far exceed the minor incremental efficiency savings, and this measure is not recommended based on a long payback.

Since the Police Offices already use Air Source Heat Pumps, these were discounted from the analysis. Likewise, a building wide Air Source replacement was not calculated because of the complexity and limited cooling hours in some of the spaces.

EEM-10 Turn Off Unused Refrigerators

Electric Savings:	\$ 80	569 0.0	kWh per year kW demand
Fuel Savings:	\$ O	0.0	MMBtu fuel per year
Total Annual Savings: Project Cost: Simple Payback:	\$ 80 \$ 0 0.0	years	

Introduction:

Energy Star qualified refrigerators are 10 percent more efficient than models that simply meet the federal minimum standard for energy efficiency. Refrigerators manufactured prior to 1993 can be expected to use twice as much energy as current Energy Star labeled refrigerators.

The Energy Star website has a list of all refrigerator models that meet current Energy Star requirements at http://www.energystar.gov/certified-products/detail/refrigerators.

Visit the Energy Star website to find a list of all refrigerator models that meet current Energy Star requirements.

Recommendation:

This measure has been added to the list, because during the walk through it was identified that some of the refrigerators were sparsely used. Specifically, the 12-year-old unit with a top freezer in the Firehouse was nearly empty. Nearby a newer unit looks as is if it used more often. if the items were consolidated into the newer unit, this older unit can be disconnected. The firehouse can simply turn it on when needed for a big event.

If it is decided that the unit cannot be disconnected, then consider purchasing a new Energy Star unit. Savings will be somewhat limited, however.

For this measure, the savings are based on turning off the old unit, which has a 6.5 Amp rating at 120 Volts, and an estimated run time of 2 hours daily.

Building Electrification Measures

The following measures evaluate the impact of replacing your existing fossil-fuel heating systems with clean heating and cooling systems powered by electricity. For space heating, air source heat pumps and ground source heat pumps are available in various system types to provide both heating and cooling to your building.

Fossil fuel-fired water heaters may also be replaced with heat pump water heaters to further reduce your use of fossil fuels.

When combined with renewable electricity, heat pump systems can eliminate the use of fossil fuels in your building.

See Appendix E - BENEFITS OF CLEAN HEATING AND COOLING (CHC) TECHNOLOGIES for more information on these system types.

BE-1 Install Clean Heating System - Ground Source Heat Pump

Electric Savings:	(\$ 3,400)	(21,799) 1.6	kWh per year kW demand
Fuel Savings:	\$ 6,344	329.4	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 2,944		
Project Cost:	\$ 184,050		
Simple Payback:	62.5	years, 55.6	years after incentives

Introduction:

Smaller buildings can take advantage of water-to-air ground source heat pump technology by replacing furnaces and other ducted systems with heat pumps having either open or closed loop ground heat exchangers. Closed loop ground heat exchangers that are properly sized provide water between 32° and 77° for heat pumps to draw heat from or reject heat to. Open loop systems see water temperatures of ~50° throughout the year. This allows heat pumps to operate at higher efficiency than air-source heat pumps that must draw from more extreme outdoor air temperatures.

The heat pumps in this type of system each have a loop pump. The building may have multiple heat pumps, but every heat pump must have a dedicated ground source heat exchanger. The heat pumps should have two-stage or variable capacity compressors for the highest efficiency. The loop pump may be constant speed, but two-speed or variable speed pumps offer higher efficiency and are preferred.

Recommendation:

Consider replacing your present heating system with a clean heating and cooling system using ground source heat pumps.

Install a closed loop heat pump system with variable-speed compressors and variable pumping. The heat pumps are assumed to be rated at 17 EER full load cooling, 22 EER part load. The heat pumps are assumed to be rated at 3.6 COP full load heating, 4.1 COP part load.

This measure is recommended for further study, because if the previous measures are adopted this system can be reduced in size and cost. Coupled with incentives and other grant money, this measure could have a decent payback.

Consult with a qualified geothermal design firm to ensure that the loop is designed correctly as the building loads have lower AC consumption (if any) to recharge the loop. It may be necessary to investigate a hybrid air source solution to have an effective payback in conjunction with the ground loop system.

BE-2 Install A Heat Pump Water Heater

Total Annual Savings: Project Cost: Simple Payback:	\$ 73 \$ 4,500 61.9	years, 6	0.1	years after incentives
Fuel Savings:	\$ O		0.0	MMBtu fuel per year
Electric Savings:	\$ 73		490 0.0	kWh per year kW demand

Introduction:

Instead of using a fuel or electricity to heat water directly, a heat pump water heater uses a mechanical refrigeration system to heat water using the surrounding room air. Heat pump water heaters are two to three times more efficient than standard electric water heaters.

Because they transfer heat from room air to the water tank, heat pump water heaters have a cooling effect on the space temperature. This is helpful in the summer cooling system, but adds to the heating system load in winter.

Recommendation:

Replace the 40 gallon electric water heater with a heat pump water heater.

The new water heater should have a unified energy factor of at least 4.

This measure is currently not recommended due to low usage, causing a high payback.

Alternatively, further study should be conducted for replacing the unit with a smaller, ondemand or tankless unit. For example, the other point of use unit serving the laundry has a 1.3 kW coil. Since demand is around \$11/kW, the potential savings for replacing a 4.5 kW coil with a 1.3 kW is potentially \$400 in demand chargers alone (3.2 kW * \$11/kW * 12 Month). This would have a decent payback for the new unit provided that the existing unit contributes to demand at 4.5 kW each month.

Existing Conditions

The site is a mixed-use building for the Village Office, Hall, Clerk, Court, Police, and Firehouse. Constructed in 1964 on two stories, this facility spans approximately 6,960 ft². The building is made of concrete block walls on slab, with the south side of the first floor built into the ground, allowing for the second-floor entrances to be at ground level even with Main Street. These main entrances lead to the Village Office and Court. The doors and windows have metal framing, and double pane glass. The windows are either fixed or sliding. The operable windows leak, while the doors have worn weatherstripping and door sweeps. Village staff working in this area state that it can be uncomfortable. The main entrance wall has brick siding, whereas the rest of the building concrete walls are painted white. The first and second floors have wood decking, and while the roof was unable to be accessed at the time of the inspection (due to a snowstorm the night prior), according to satellite imagery found online, the roof has what appears to be black rolled membrane with significant patching. According to Village staff, the roof has not been replaced in approximately 30 years. Likely there is insulation between the deck and the dropped ceiling consistent with building practices in the early 1990s.

The first floor is used entirely for the fire department, and has four 9' tall by 12' wide overhead doors to fit two firetrucks and two emergency services vehicles. These door seal well. The side windows, however, are almost exclusive single pane plastic and glass that leak considerably. The rear of the building is the main access point for the firehouse. It consists of a heated vestibule that leads to the firehouse and the stairwell to the Village Hall. The entrance to the building is a steel frame door with a double pane half window that does not close well, and has no weatherstripping nor a door sweep. The entrances the Firehouse and the stairwell appear to seal better. The Firehouse door is a solid steel door. The entrance to the stairwell is a metal frame full length double pane glass door, similar to the Main Street entrances on the second floor. Lastly, there is one side glass door entering the Village Hall that is the same as the other three. This door also needs new weatherstripping and a door sweep. The windows on the second-floor rear and sides of the building all appear to seal better than the Main Street entrance. This is because they have either vinyl or aluminum siding. They are a mixture of sliding double pane glass windows. The facility windows were manufactured in 2002 & 2003 based on the date stamp in the gasket. During the walkthrough it was observed that the window air conditioners in the Firehouse kitchen and the Court's office are left in the windows all year round, which will cause infiltration during the winter.

This building has different operations and hours of occupancy for each service type. The Village Office is occupied the most often, but almost all the staff are part-time Village employees (or volunteers, like with the Firehouse). The Village Office is occupied from 7:30-2:30 Monday through Thursday, and Friday until noon. The Court office hours are Thursday and Friday from noon to 5pm, and Court proceedings as needed are the third and fourth Thursdays of the month at 6pm. The firehouse is used when an emergency occurs, of which the predominant calling point is for emergency medical services. According to Village Staff there will be around 260-270 calls this calendar year. The Police officers have several offices on the second floor next to the Village Hall, and they come in only to collect their

equipment at the beginning of their shift, and to fill out reports at the end of their shift. The Village Hall is used for meetings and can also be rented.

Lighting Systems

Lighting consists predominantly of fluorescent fixtures. The second-floor offices all have 4' T8 tubes in recessed troffers with lenses. The Firehouse has a mixture of 8' T8 and T12 pendant fixtures. The Firehouse kitchen and bathrooms were recently renovated to have 2'x2' LED fixtures. Any other lights in the facility are a combination of incandescent and LED lamps. All fixtures are on switches. The light switch below the Firehouse Kitchen window AC unit trips the breaker associated with the lights when turned on. It is unknown what it is connected to, but could pose a safety risk if not removed.

Exterior lighting consists of LED flood lights over the parking lot and LED lamps over the entrances. These are all on photocells.

Heating Ventilating and Air Conditioning Systems

Heating is provided by an oil fired Buderus Logano hot water boiler, model G215/6. Age could not be discerned from the serial number, but it looks to be in good condition. Its maximum input is 2.1 gallons per hour, which is around 291 Mbh input. With a gross output of 256 Mbh, the rated efficiency is around 88%. There are four zones with Taco 1/8 hp circulation pumps. The four zones are controlled by rotary dial thermostats located in the Firehouse, Village Office, Court, and Village Hall. The Firehouse heating setpoint was 68 °F, and is likely to remain at that temperature all heating season. The Village Hall was set to 60 °F, but is likely adjusted during meetings. The Court was set at 63 °F, and is likely similarly adjusted during office hours. The Village Office is the most occupied space and it is set to maintain 66 °F.

The 1.5"-2" pipes are not insulated in the boiler room, nor throughout the Firehouse ceiling as the pipes distribute to the second-floor perimeter baseboards and radiators. The Firehouse has three ceiling mounted unit heaters with 1/15 hp motors. The Firehouse kitchen has a wall ventilator and a perimeter baseboard in the bathroom.

Air conditioning is provided by two split system heat pumps, one split system AC unit, and two window AC units. The heat pumps serving the Village Hall and Police Station offices are multi-split Carrier units with an outdoor model of 38MGRQ30D—3. They have a total capacity of 2.5 Tons, a 12.5 EER and a 23.8 SEER. Heating is rated for an outdoor air temperature between 5 and 47 °F. Capacity fluctuates from 29,230 Btu/h to 28,000 Btu/h as the temperature increases. Conversely, as the temperature decreases, the rated coefficient of performance (COP) decreases from 3.8 to 2.0. The specification sheet claims to have Energy Star rating.

The Village Hall likely has a 1-ton interior unit, while the Police offices likely have ½ ton units. The Police offices have computer and radio equipment that need tighter temperature controls, and it is likely that the perimeter radiators are disconnected. Therefore, the heat pumps provide both the cooling and heating to each office maintaining a temperature of 72 °F. It is unlikely that the Village Hall needs supplemental heat from the heat pumps in the winter.

The Village Office has a ComfortStar split system AC unit. The nameplate ratings suggest it is a 2-ton system (23,000 Btu/h) with a SEER of 16.4, and is used as needed. The Firehouse kitchen window AC unit is an Arctic King, model WWK+05CR5. It has a 5,000 Btu/h capacity and an EER of 11.2, with a CEER of 11. Per the staff, this unit operates throughout the summer and is not turned off when unoccupied. The Court window AC model could not be observed, but it is likely a 1-ton unit with an estimated efficiency of 9 EER. It is likely only used as needed.

The bathrooms have ceiling fan ventilators. All other occupant ventilation is provided by the fenestration. There is a ducted exhaust system for each of the four emergency vehicles. Hoses are connected to the vehicle exhaust that collects centrally and rejected out the side wall and up above the roof. A small motor, estimated at ½ hp (snow covered nameplate) is turned on as needed.

Water Heating System

There are several water heating systems for this facility. The Firehouse Kitchen sink, bathroom faucets and showers as well as the second-floor restrooms are served by an American Water Heater Company, model E62-40R-045DV, 40-gallon, electric hot water maker with a 4.5 kW coil. The measured temperature was 115 °F. It has a 92% energy factor, and is located in the boiler room.

The firefighter outerwear has a dedicated laundry system. The hot water maker for the slop sink and the washing machine is a small Stiebel Eltron, 4-gallon, 1.3 kW unit. It's measured temperature was 108 °F.

The Village Hall kitchen is no longer used. There is an undercounter American Water Heater Company Proline, model E61-20U-0158V, 19-gallon, 1.5 kW hot water maker.

Other Energy-using Systems

This building has a lot of equipment due to the nature of its services. In addition to the typical office equipment such as computers, screens, printers, and telephony each space some unique equipment to itself. They are listed below.

- Firehouse kitchen Used mainly when there is a large fire requiring long hours
 - Refrigerators one newer medium sized with a glass door, and two older units. One is nearly empty, yet on, while the other is locked.
 - Coffee maker
 - o Microwave
 - o Icemaker
 - o Oven Range
- Firehouse
 - Ingersoll Rand air compressor likely to pressurize the water in the trucks.
 - Eagle Aire systems compressor to regenerate the oxygen tanks

- Kenmore Elite washer and Ready Rack firehouse express dryer
- Village Hall Kitchen not used, except refrigerator
 - Frigidaire refrigerator
 - Microwave
 - Commercial stove and ranges (with side wall exhaust)
- Police Office
 - Radio equipment
 - o Mini-fridge
- Village Office
 - o Mini-fridge
 - o Coffee maker

Note that the process equipment, such as the compressors were not investigated for this study. These energy consuming devices are needed by the Firehouse to provide the emergency services. Further investigations into reducing the energy intensity of the Police Station and Firehouse equipment could have a big impact on the building.

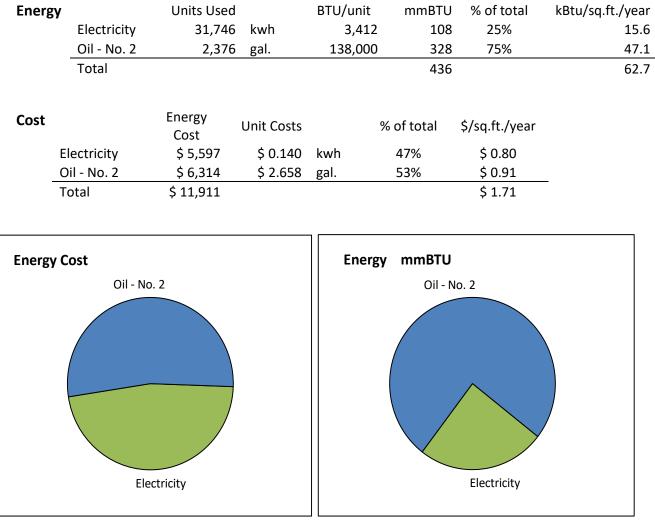
See Appendix D for further details regarding the energy calculations performed for this study.

Appendix A

Equipment Inventory

	Heating and Air Conditioning Equipment													
Unit Type	Qty	Make/Model	Heating kBtuh	Heating Eff.	Cooling Capacity	Units	EER	Serves/Location	Year					
Hot water boiler	1	Buderus Logano G215/6	256	88%				Building Radiators/Heaters						
Multi-Split System HP	2	Carrier 38MGRQ30D—3	29	380%	2 1/2	tons	12.5	Village Hall/Police Offices	2021					
Split System AC	1	ComfortStar			2	tons	~11	Village Office						
Window AC	1	Unknown			1	tons	9.0	Court						
Window AC	1	Arctic King WWK+05CR5			3/7	tons	11.2	Firehouse Kitchen	2015					

	Domestic Hot Water												
Unit Type	Qty	Make/Model	Capacity	Units	Fuel Type	Storage Capacity (gal.)	Eff.	Serves/Location	Year				
Storage	1	American E62-40R	4.5	kW	electricity	40	92%	Firehouse & Bathrooms	2011				
Tankless	1	Stiebel Eltron SHC 4	1.3	kW	electricity	4	100%	Firehouse Laundry					
Tankless	1	American E61-20U	1.5	kW	electricity	19	100%	Village Hall Kitchen					


Motors										
Unit Type	Qty	Make/Model	HP	Loading	Туре	Hours/year	Eff.	Serves/Location	Year	
Boiler Circulators	4	Тасо	1/8					Boiler Room		
Unit Heater Fans	3	Multiple	1/15							

				In	terior Li	ighting Fixtures	5				
	Existing Fixtures						Recommended Inte	Recommended Interior Lighting Efficiency Improvements			
Line #	Area	Qty	Present Lighting Type	Lamps /fixt	Watts /Fixt	Control Type	Measure Type	Qty	Proposed Lighting Type	Lamps /fixt	Watts /Fixt
1	Boiler Room	1	CFL13w	1	13	No Change	No change	1	CFL13w	1	13
2	Firehouse Kitchen	3	2x2 LED Panels	1	45	No Change	No change	3	2x2 LED Panels	1	45
3	Firehouse Kitchen	1	4' 32w T8 Elec. bal.	2	59	No Change	New LED Fixture	1	2x2 LED Panels	1	45
4	Firehouse BR's	3	2x2 LED Panels	1	45	No Change	No change	3	2x2 LED Panels	1	45
5	Firehouse	6	8' 110w T12 HO Std. Mag	2	257	No Change	LED Relamp	6	8' LED T12/8 IS, 33W	2	66
6	Firehouse	1	8' 59w T8 Elec. bal.	2	109	No Change	LED Relamp	1	8' LED T12/8 IS, 33W	2	66
7	Firehouse	1	2' 17w T8 Elec. bal.	1	20	No Change	LED Relamp	1	2' LED tube 1150 lu. 7W	1	7
8	Rear Door	1	LED 9w	1	9	No Change	No change	1	LED 9w	1	9
9	Rear Stair (1 Out)	1	4' 32w T8 Elec. bal.	2	59	No Change	New LED Fixture	1	4' LED fixture 4500 lu. 42w	1	42
10	Village Hall (3 Out)	13	4' 32w T8 Elec. bal.	2	59	No Change	New LED Fixture	13	4' LED fixture 4500 lu. 42w	1	42
11	Village Hall Door	1	60 watt Incandescent	2	120	No Change	LED Relamp	1	60 watt Incandescent	2	120
12	Village Hall Kitcher	3	4' 32w T8 Elec. bal.	2	59	No Change	New LED Fixture	3	4' LED fixture 4500 lu. 42w	1	42
13	Police Office	3	4' 32w T8 Elec. bal.	2	59	No Change	New LED Fixture	3	4' LED fixture 4500 lu. 42w	1	42
14	Police Office (est.)	3	4' 32w T8 Elec. bal.	2	59	No Change	New LED Fixture	3	4' LED fixture 4500 lu. 42w	1	42
15	Hallway to Court	4	4' 32w T8 Elec. bal.	1	31	No Change	New LED Fixture	4	4' LED fixture 4500 lu. 42w	1	42
16	Hall Bathrooms	2	60 watt Incandescent	2	120	No Change	LED Relamp	2	60 watt Incandescent	2	120
17	Village Court	6	4' 32w T8 Elec. bal.	2	59	No Change	New LED Fixture	6	4' LED fixture 4500 lu. 42w	1	42
18	Village Office (3 O	12	4' 32w T8 Elec. bal.	2	59	No Change	New LED Fixture	12	4' LED fixture 4500 lu. 42w	1	42
19	Village Office Close	1	LED 9w	1	9	No Change	No change	1	LED 9w	1	9

	Exterior Lighting Fixtures												
Existing Fixtures						Recommended	Lighting Efficiency In	nproven	nents				
Line #	Area	Qty	Present Lighting Type	Lamps /fixt	Watts /Fixt	Control Type	Measure Type	Qty	Proposed Lighting Type	Lamps /fixt	Watts /Fixt		
1	Exterior	3	LED Flood	1	27	No Change	LED Area Light	3	LED Flood	1	27		
2	Exterior	3	LED Wallpack	1	9	No Change	LED Relamp	3	LED Wallpack	1	9		

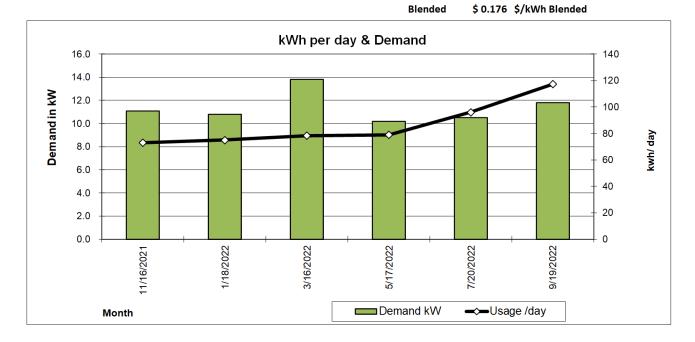
Appendix B

Energy Use and Cost Summary

Energy Cost Index \$ 1.71 /sf/yr.

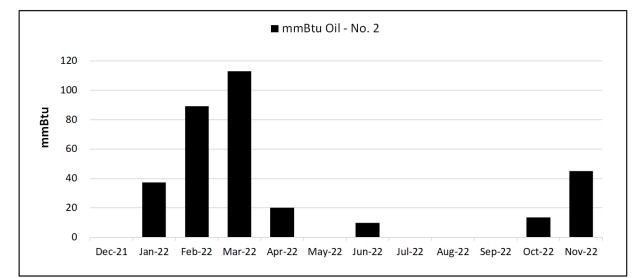
Energy Use Intensity 62.7 k

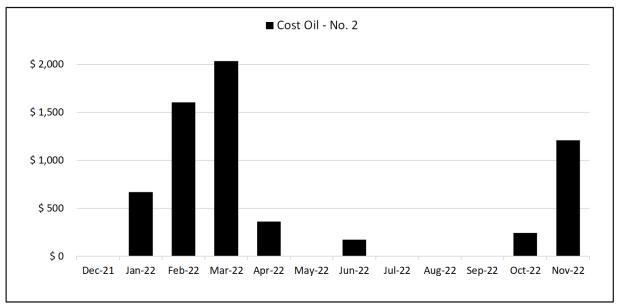
62.7 kBTU/sf/yr.


Utility Bill Data

The following pages present the energy use and cost data for your facility and establish the value of each type of energy. Electricity is measured and billed in units of kilowatt-hours (kWh) that represent the total amount of electricity used in the billing period. Electricity may also be billed based on the highest rate of use, or peak demand, that occurred during the billing period. Electric demand is billed in units of kilowatts (kW).

Other fuels may be billed in volume units (gallons, hundred cubic feet or ccf, etc.) or based on their heat content (therms, equal to 100,000 British Thermal Units). All energy types may be converted into a common unit, such as BTUs, to facilitate analysis and comparison with other facilities. One million BTUs is abbreviated as mmBtu in this report.


ELECTRICITY CONSUMPTION AND COST ANALYSIS


CEC-400097-2	1-S - Vill	age of Philmon	t				Utility	NYSEG		
							Account #	ends w/ -900		
Gros	s Area:	6,960	s.f.				Rate	: SC 12002 Sup	ply Services	
		15,563	Btu/s.f./Yr				Meter Charge	\$ 33.00	/ month	
		\$ 0.80	/s.f.			D	emand Charge	\$ 10.96	/ kW	
		2.0	watts/s.f.				Supplier	:		
		Usa	ge	Electricit	y Charges	Total				
Month		Energy	Demand	Utility	Supply	Electricity	Demand	Energy	Load	Usage
Ending	Days	kWh	kW	Cost	Costs	Cost	Cost	\$/kWh	Factor	/day
11/16/2021	60	4,381	11.1			\$ 703	\$ 122	\$ 0.118	0.27	73
1/18/2022	63	4,723	10.8			\$ 754	\$ 118	\$ 0.121	0.29	75
3/16/2022	57	4,461	13.8			\$ 950	\$ 151	\$ 0.164	0.24	78
5/17/2022	62	4,887	10.2			\$ 809	\$ 112	\$ 0.129	0.32	79
7/20/2022	64	6,147	10.5			\$ 1,032	\$ 115	\$ 0.138	0.38	96
9/19/2022	61	7,147	11.8			\$ 1,349	\$ 129	\$ 0.161	0.41	117
	367	31,746	68.2	\$ O	\$ O	\$ 5,597	\$ 747	\$ 0.140	0.65	87
	A	Annual Energy:	31,746	kWh / year	\$ 5,597	/year	Unit Costs			
	Peak Demand		14	kW Peak		Deman	d \$10.96	\$/kW		
Average Demand:		11	kW		Energ	y \$0.140	\$/kWh Increi	mental		

ALL FUELS CONSUMPTION AND COST ANALYSIS CEC-400097-1-S - Village of Philmont

Month	mmBtu	Cost
	Oil - No. 2	Oil - No. 2
Dec-21	0	\$ 0
Jan-22	37	\$ 672
Feb-22	89	\$ 1,606
Mar-22	113	\$ 2,038
Apr-22	20	\$ 363
May-22	0	\$ 0
Jun-22	10	\$ 177
Jul-22	0	\$ 0
Aug-22	0	\$ 0
Sep-22	0	\$ 0
Oct-22	14	\$ 246
Nov-22	45	\$ 1,211
Total	328	\$ 6,314
\$/mmBtu	\$ 19.26	
BTU/unit	138,000	1 mmBtu = 1,000,000 Btus
kBtu/SF/Yr.	47.1	1 kBtu = 1,000 Btus

Appendix C

EEM Calculations

Interactions

The Energy Efficiency Measure calculations in this section are stand-alone measures that are not interacted with the other calculations. Each measure shows the energy savings that may be expected if it is the only measure to be implemented. If multiple measures will be implemented, energy savings will likely be lower than the calculations represent.

As an example, replacing an 80% efficient boiler with a 92% efficient boiler will reduce the amount of fuel required to heat the building. If the walls and roof are insulated such that the required heating energy is reduced by 30%, the new boiler will serve a smaller heating load, and the energy savings gained from the boiler replacement will be reduced by 30%.

CALCULATION	S FOI	R INTERIOR LIGHTI	ING RE	TROFI	т																					
EEM-1	CEC	400097-1-S - Village o	of Philm	ont			Type:	Units:	Unit cost:	BTU/unit						HVAC Adjust	ment Factors	s								
							Multiple	mmBtu	\$ 19.653	1,000,000						Cooling	Demand	Fuel								
							Electricity	kwh	\$ 0.140	3,412						HVACc	HVACd	HVACg								
							Demand	kW	\$ 10.96	12	Months	of demand savings/year				13.00%	20.00%	-2.60%								
							50%	of building	is air conditi	oned																
Existing Interior Ligh	ting Sys	tems			Recommend	led				Recommended Inter	ior								Energy & Demand Calculations					-		
					Lighting Con	trols				Lighting Efficiency In	nprovem	ents							Demand Total Use			al Use	Energ	gy Savings		
Area	Qty	Present Lighting Type	Lamps /fixt	Watts /Fixt	Control Type	% Reduction	Present Hrs./yr.	Proposed Hrs./yr.	# Controls required	Measure Type	Qty	Proposed Lighting Type	Lamps /fixt	Reflect or ?	Watts /Fixt	Project Cost	Annual Savings	kWh/yr. Savings	Payback (Years)	Present kW	Proposed kW	kW Saved	Present kwh/year	Proposed kwh/year	Controls kwh/year	Efficiency kwh/year
Boiler Room	1	CFL13w	1	13	No Change	0%	50	50	0	No change	1	CFL13w	1		13	\$ 0	\$ 0	0		0.0	0.0	0.0	1	1	0	(
Firehouse Kitchen	3	2x2 LED Panels	1	45	No Change	0%	500	500	0	No change	3	2x2 LED Panels	1		45	\$ 0	\$0	0		0.1	0.1	0.0	68	68	0	C
Firehouse Kitchen	1	4' 32w T8 Elec. bal.	2	59	No Change	0%	500	500	0	New LED Fixture	1	2x2 LED Panels	1		45	\$ 120	\$3	7	42.5	0.1	0.0	0.0	30	23	0	7
Firehouse BR's	3	2x2 LED Panels	1	45	No Change	0%	50	50	0	No change	3	2x2 LED Panels	1		45		\$0	0		0.1	0.1	0.0	7	7	0	
Firehouse	6	8' 110w T12 HO Std. Mag	g 2	257	No Change	0%	1,000	1,000	0	LED Relamp	6	8' LED T12/8 IS, 33W	2		66	\$ 360	\$ 311	1,146	1.2	1.5	0.4	1.1	1,542	396	0	1,146
Firehouse	1	8' 59w T8 Elec. bal.	2		No Change	0%	1,000	1,000	0	LED Relamp	1	8' LED T12/8 IS, 33W	2		66	\$ 60	\$ 12	43	5.1	0.1	0.1	0.0	109	66	0	43
Firehouse	1	2' 17w T8 Elec. bal.	1	20	No Change	0%	1,000	1,000	0	LED Relamp	1	2' LED tube 1150 lu. 7W	1		7	\$ 14	\$4	13	4.1	0.0	0.0	0.0	20	7	0	13
Rear Door	1	LED 9w	1	9	No Change	0%	2,500	2,500	0	No change	1	LED 9w	1		9		\$0	0		0.0	0.0		23	23	0	0
Rear Stair (1 Out)	1	4' 32w T8 Elec. bal.	2		No Change	0%	8,760	8,760	0	New LED Fixture	1	4' LED fixture 4500 lu. 42	1		42		\$ 23	149	5.2	0.1	0.0		517	368	0	
Village Hall (3 Out)	13	4' 32w T8 Elec. bal.	2			0%	250	250	0	New LED Fixture	13	4' LED fixture 4500 lu. 42	1		42		\$ 37	55	42.4	0.8	0.5		192	137	0	
Village Hall Door	1	60 watt Incandescent	2		No Change	0%	200	200	0	LED Relamp	1	60 watt Incandescent	2		120		\$ 0	0		0.1	0.1		24	24	0	
Village Hall Kitchen	3	4' 32w T8 Elec. bal.	2	59	No Change	0%	5	5	0	New LED Fixture	3	4' LED fixture 4500 lu. 42	1		42		\$7	0	53.4	0.2	0.1	0.1	1	1	0	0
Police Office		4' 32w T8 Elec. bal.	2		No Change	0%	500	500	0	New LED Fixture	3	4' LED fixture 4500 lu. 42	1		42		\$ 10	26		0.2	0.1		89	63	0	26
Police Office (est.)	3	4' 32w T8 Elec. bal.	2		No Change	0%	500	500	0	New LED Fixture	3	4' LED fixture 4500 lu. 42	1		42		\$ 10	26	35.0	0.2	0.1	0.1	89	63	0	26
Hallway to Court	_	4' 32w T8 Elec. bal.	1			0%	250	250	0	New LED Fixture	4	4' LED fixture 4500 lu. 42	1		42	\$ 480	(\$ 7)	(11)	(65.5)	0.1	0.2		31	42	0	(11
Hall Bathrooms	_	60 watt Incandescent	2		No Change	0%	200	200	0	LED Relamp	2	60 watt Incandescent	2		120	\$0	\$ 0	0		0.2	0.2	_	48	48	0	
Village Court	6	4' 32w T8 Elec. bal.	2		No Change	0%	500	500	0	New LED Fixture	6	4' LED fixture 4500 lu. 42	1		42		\$ 21	51	35.0	0.4	0.3		177	126	0	
Village Office (3 Out)		4' 32w T8 Elec. bal.	2		No Change	0%	1,625	1,625	0	New LED Fixture	12	4' LED fixture 4500 lu. 42	1		42	1 7 1	\$ 73	332	19.7	0.7	0.5		1,151	819	0	
Village Office Closet	1	LED 9w	1		No Change	0%	50	50	0	No change	1 66	LED 9w	1		9	\$0	\$ 0	0		0.0	0.0		0	0	0	
	66		4.9 kW existing			0				3.1 kW proposed				4.9								1,836				
Note: bal. = ballast, E	E = ene	gy efficient, STD = standa	rd efficie	ncy, mag.	. = magnetic, E	Elec. = electro	onic, CFL =	compact flue	prescent lan	1p															1,836	kwh
SUMMARY OF SAVIN	IGS BY	MEASURE TYPE:		Fixture	Energy	Savings	Demand																			
		Measure Type		Qty.	Controls	Efficiency	kW	Project	Electric	Payback (Years)	Moorure	Description				1										
				QLY.	kwh/year	kwh/year	Savings	Cost	Savings	ayback (redis)																
EEM-1C		LED Relamp		11		1,202	1.2	\$ 434	\$ 326	1.3	Screw-in	or Socket based LED lamp	s													
EEM-1G		New LED Fixture		46		634	0.7	\$ 5,520	\$ 176	31.3	New LED	fixture for surface mount	ing													
				66	0	1,836	1.9	\$ 5,954	\$ 503																	
		Gross Energy	y Savings	5	1,836	kwh																				
		Net Energy	/ Savings	;	1,955	kwh	2.1	-5	mmBtu	\$ 444	net	- ·														
PAYBACK PERIOD:					_,					,																
THE PROPERTY LINED.																										

\$ 5,954 = 13.4 year payback \$ 444

Estimated Cost Interior Lighting: Annual Energy Savings (kWh + kW):

		97-1-S - Vill				
INPUT DATA:		100%	of Building to bo	Sothack		
INPUT DATA.		100%	of Building to be Current	Proposed		
Heating T Setp	oint:	Occupied	66	66	deg. F.	
	1	Unoccupied	66	62	deg. F.	
Cooling T Setpo	oint:	Occupied Unoccupied	72 72	72 80	deg. F. deg. F.	
HVAC Schedule		Occupied	32.5	32.5	Hours per week	
		Unoccupied	135.5	135.5	Hours per week	
Q internal gain	5:	Occupied	14,368	14,368	Btuh	
O internal rain		Unoccupied	5,644	5,644	Btuh	
Q internal gain BLC:	5:	Schedule Occupied	33 1,771	33 1,771	Hours per week Btuh/deg. F.	
excludes DOA	5)	Unoccupied	2,213	2,213	Btuh/deg. F.	
	,	Fuel Data	Heating	Cooling	,	
		Type:	Oil - No. 2	Electricity	Economizer?	
		Units: Unit cost:	gal. \$ 2.658	kwh \$ 0.140	No	
		BTU/unit	138,000	3,412		
	E	fficiency/ COP:	88.0%		Avg. COP. EER:	12.0
CALCULATION	;:			5.0%	cooling setback	
Current		Newburgh, 33	hrs./week			
Din Mid Dt	Occupied	Unoccupied	Occ Net Heat	Unocc Net Heat	Heating Fuel	Cooling
Bin Mid Pt.	Hours	Hours	Loss BTUH	Loss BTUH	Use gal.	Energy kwł
(2.5)	4	23	106,919	145,965	31	
2.5	11	52	98,066	134,899	67	
7.5	17	40 119	89,213	123,832	53	
12.5 17.5	31 44	229	80,360 71,507	112,766	131 218	
22.5	45	274	62,654	90,633	228	
27.5	48	317	53,801	79,567	229	
32.5 37.5	123 142	651	44,948	68,501 57,434	413	
42.5	142	679 616	36,095 27,241	57,434 46,368	363	1
47.5	170	639	18,388	35,302	213	
52.5	122	600	9,535	24,235	129	
57.5	129	635	682	13,169	70	
62.5 67.5	121 146	651 546	0 (6,400)	2,103	11 0	
72.5	105	351	(15,253)	(6,751)	0	1
77.5	126	281	(24,106)	(17,817)	0	3
82.5	86	190	(32,959)	(28,883)	0	3
87.5 92.5	44	100 42	(41,813) (50,666)	(39,950) (51,016)	0	2
97.5	0	2	(59,519)	(62,082)	0	
102.5	0	0	(68,372)	(73,149)	0	
107.5	0	0	(77,225)	(84,215)	0	
112.5	0 8,760	0 hours	(86,078)	(95,281)	2,431	12
Proposed	0,700	Newburgh, 33	hrs /week		2,101	
	Occupied	Unoccupied	Occ Net Heat	Unocc Net Heat	Heating Fuel	Cooling
Bin Mid Pt.	Hours	Hours	Loss BTUH	Loss BTUH	Use gal.	Energy kwł
(2.5)	4	23	106,919	137,112	29	
2.5 7.5	11	52 40	98,066 89,213	126,046 114,979	63 50	
12.5	31	119	80,360	103,913	122	
17.5	44	229	71,507	92,847	201	
22.5	45	274	62,654	81,780	208	
27.5	48	317 651	53,801 44,948	70,714 59,648	206	
37.5	142	679	36,095	48,581	314	
42.5	176	616	27,241	37,515	230	
47.5	181	639 600	18,388	26,448	167	
52.5 57.5	122	600	9,535	15,382 4,316	86	
62.5	121	651	0	0	0	
67.5	146	546	(6,400)	0	0	
72.5	105	351	(15,253)	0 (111)	0	1
82.5	126	281 190	(24,106) (32,959)	(111) (11,177)	0	2
87.5	44	100	(41,813)	(22,243)	0	1
92.5	22	42	(50,666)	(33,310)	0	1
97.5 102.5	0	2	(59,519) (68,372)	(44,376) (55,443)	0	
102.5	0	0	(77,225)	(66,509)	0	
112.5	0	0	(86,078)	(77,575)	0	
	8,760	hours			2,064	7
			Present	Proposed	Savings	
		Heating	2,431	2,064	367	gal.
		Cooling	127	72	55	kwh
		Annual Energy	/\$		\$ 982	
MPLEMENTAT	ION COST 8	PAYBACK PER	IOD:			
		Material				
Item		\$/unit	Labor \$/unit	Quantity	Total	
Wifi thermosta	t	\$ 150	\$ 50	5	\$ 1,000	
					\$0	
					\$ 1,000	
	Implementa	tion Cost:		\$ 1,000	= 1 year payba	ck
		gy Savings:		\$982	_ ,co. puyba	

EEM-3	CEC-400097	'-1-S - Village	of Philmont			
INPUT DATA:						
Surface to be i	nsulated:	Roof	Walls			
Area:		3,480	3,759	sq ft		
Present R valu	e:	19.0	5.0			
Revised R valu	e	39.0	19.0			
Present U fact	or::	0.053		Btuh/sq ft-deg F		
Revised U fact	or:	0.026	0.053	Btuh/sq ft-deg F		
Present U x Ar		183	752		UA Total present	
Proposed U x /	Area	89	198	287	UA Total propos	ed
CALCULATIO	NS:	Occupied	Unoccupied	Fuel Data	Heating	Cooling
Heating Setpo		66	66	Type:		Electricity
Cooling Setpoi		72	72	Units:		kwh
					0	
Q internal gair		14,368	5,644	Unit cost:		\$ 0.140
BLC (Btuh/deg		1,771	2,213	BTU/unit		3,412
T Balance (°F.)		57.9	63.4	Efficiency/ COP:		351.7%
I Balance = T S	etpoint - (Q inte	ernal gains / BLC)		EER:		12.0
	Occupied	Unoccupied	Change in Occupied	Change in Unoccupied	Heating Savings	Cooling Courts -
Bin Mid-Pt.	Hours	Hours	Heat Loss	Heat Loss	gal.	kwh
(2.5)	4	23	44,380	44,380	10	C
2.5	11	52	41,141	41,141	21	0
7.5	17	40	37,901	37,901	18	0
12.5	31	119	34,662	34,662	43	C
17.5	44	229	31,422	31,422	71	0
22.5	45	274 317	28,183	28,183	74	0
32.5	123	651	24,943	24,943	138	0
37.5	142	679	18,465	18,465	130	C
42.5	176	616	15,225	15,225	99	C
47.5	181	639	11,986	11,986	81	C
52.5	122	600	8,746	8,746	52	C
57.5	129	635	5,507	5,507	35	
62.5	121	651	0	2,268	12	C
67.5	146	546	0	0	0	(
72.5	105	351	(324)	(324)		12
77.5	126 86	281 190	(3,563) (6,803)	(3,563) (6,803)	0	121
87.5	44	190	(0,803)	(10,042)	0	156
92.5	22	42	(13,282)	(13,282)	0	71
97.5	0	2	(16,521)	(16,521)	0	3
102.5	0	0	(19,760)	(19,760)	0	C
107.5	0	0	(23,000)	(23,000)	0	(
112.5	0	0	(26,239)	(26,239)	0	C
	8,760	hours		Energy Savings:	854	484
					\$ 2,269	\$ 68
	HON COST & PI	AYBACK PERIOD:				
		Material & Labor				
	Item	(\$ / sq ft)	Quantity	Total		
	Roof	\$ 15.00	3,480	\$ 52,200		
	Walls	\$ 40.00	3,759	\$ 150,359		
		\$ 0.00	7,239	\$ 0		
	Implementation	n Cost:	¢ 202 550	- 96 7 year navhadi		
	Implementatio		\$ 202,559	= 86.7 year payback		Deres 01
	Annual Energy	Savings:	\$ 2,337			Page 31

	CEC-400097-1-S - Village of I	Philmont					
NPUT DA							
	Bldg. Volume	69,600	cubic feet			Present infiltrati	-
			ACH	Period	Cu. ft./hr.	CFM	btuh/deg.
	Baseline infiltration rate		0.50	Occupied	34,800	580	626
	from heat loss study		0.50	Unoccupied	34,800	580	626
	Proposed Reductions	Crack Length	Leakage	Rate - cfh		Leakage - net c	fh
	Cubic feet per hour	lineal feet	Present	New	Present	Proposed	Savings
	Roof - Wall Joint				0	0	
	Window Jamb to Wall				0	0	
	Operable Window WS	8	60	5	240	20	22
	Door Sweeps & WS	60	60	5	1,800	150	1,65
	Fireplace				0	0	
					2,040	170	1,87
	Proposed Reductions	Air chang	es/Hour		Ρ	roposed infiltrat	tion
	Air changes/hour	% reduction	Proposed	Period	Cu. ft./hr.	CFM	btuh/deg.
		5%	0.47	Occupied	32,930	549	593
		5%	0.47	Unoccupied	32,930	549	593
	Total Infiltration & Reduction	Occupied	34,800	32,930	1,870	cfh savings	
	Cu.Ft./hour	Unoccupied	34,800	32,930	1,870	cfh savings	
nergy Cos	st Savings = (Energy Savings / CF1) X (Unit cost / Eff	iciency)				
	TC · · · ·	Occupied	Unoccupied	05			
	T Setpoint:	66	66	°F			
	Q internal gains:	66 14,368	66 5,644	Btuh			
	Q internal gains: BLC:	66 14,368 1,771	66 5,644 2,213	Btuh Btuh/°F	T Sataoint - /	O internal gain	c / RI C)
	Q internal gains: BLC: T Balance:	66 14,368 1,771 57.9	66 5,644	Btuh	T Setpoint - ((Q internal gains	s / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs.	66 14,368 1,771 57.9 /week	66 5,644 2,213 63.4	Btuh Btuh/°F °F. T Balance =		(Q internal gains	s / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs. Accumulated Hours	66 14,368 1,771 57.9	66 5,644 2,213	Btuh Btuh/°F °F. T Balance = below balance t	emp.	(Q internal gains	s / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs.	66 14,368 1,771 57.9 /week 1,073	66 5,644 2,213 63.4 5,525	Btuh Btuh/°F °F. T Balance =	emp.	(Q internal gains	5 / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs. Accumulated Hours Avg. OAT (T Set- Avg OAT)	66 14,368 1,771 57.9 /week 1,073 39.9 26.1	66 5,644 2,213 63.4 5,525 42.1	Btuh Btuh/°F °F. T Balance = below balance t °F below balance	emp.	(Q internal gains	s / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs. Accumulated Hours Avg. OAT (T Set- Avg OAT)	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2	66 5,644 2,213 63.4 5,525 42.1	Btuh Btuh/°F °F. T Balance = below balance t °F below balance	emp.	(Q internal gains	s / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs. Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units:	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal.	66 5,644 2,213 63.4 5,525 42.1 23.9	Btuh Btuh/°F °F. T Balance = below balance t °F below balance	emp.	(Q internal gains	s / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs. Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost:	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658	66 5,644 2,213 63.4 5,525 42.1 23.9 /gal.	Btuh Btuh/°F °F. T Balance = below balance t °F below balance	emp.	(Q internal gains	s / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs., Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658 138,000	66 5,644 2,213 63.4 5,525 42.1 23.9	Btuh Btuh/°F °F. T Balance = below balance t °F below balance	emp.	(Q internal gains	5 / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs., Accumulated Hours Avg. OAT (T Set- Avg OAT) (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency:	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658 138,000 88.0%	66 5,644 2,213 63.4 5,525 42.1 23.9 /gal. Btu/gal.	Btuh Btuh/°F °F. T Balance = below balance t °F below balance	emp.	(Q internal gains	s / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs., Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658 138,000	66 5,644 2,213 63.4 5,525 42.1 23.9 /gal.	Btuh Btuh/°F °F. T Balance = below balance t °F below balance	emp.	(Q internal gains	s / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs., Accumulated Hours Avg. OAT (T Set- Avg OAT) (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency:	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658 138,000 88.0% 0.018	66 5,644 2,213 63.4 5,525 42.1 23.9 /gal. Btu/gal. Btu/hr-°F-cfh	Btuh Btuh/°F °F. T Balance = below balance t °F below balance °F difference	emp. ce temp.	(Q internal gains	s / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs., Accumulated Hours Avg. OAT (T Set- Avg OAT) (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency:	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658 138,000 88.0% 0.018 Ene	66 5,644 2,213 63.4 5,525 42.1 23.9 /gal. Btu/gal. Btu/gal. Btu/hr-°F-cfh	Btuh Btuh/°F °F. T Balance = below balance t °F below balance °F difference	emp. ce temp. Fuel Use	(Q internal gains	s / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs. Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658 138,000 88.0% 0.018 Ene Occupied	66 5,644 2,213 63.4 5,525 42.1 23.9 /gal. Btu/gal. Btu/gal. Btu/hr-°F-cfh ergy Use - Btu/yee Unoccupied	Btuh Btuh/°F °F. T Balance = below balance t °F below balance °F difference °F difference	emp. ce temp. Fuel Use gal. / yr	(Q internal gains	s / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs. Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658 138,000 88.0% 0.018 Ene Occupied 17,514,500	66 5,644 2,213 63.4 5,525 42.1 23.9 /gal. Btu/gal. Btu/gal. Btu/hr-°F-cfh	Btuh Btuh/°F °F. T Balance = below balance t °F below balance °F difference °F difference	emp. ce temp. Fuel Use	(Q internal gains	s / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs. Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658 138,000 88.0% 0.018 Ene Occupied	66 5,644 2,213 63.4 5,525 42.1 23.9 /gal. Btu/gal. Btu/gal. Btu/hr-°F-cfh ergy Use - Btu/yee Unoccupied 82,714,600	Btuh Btuh/°F °F. T Balance = below balance t °F below balance °F difference °F difference	emp. ce temp. Fuel Use gal. / yr 825		5 / BLC)
MPLEME	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs. Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658 138,000 88.0% 0.018 Ene Occupied 17,514,500 16,573,300	66 5,644 2,213 63.4 5,525 42.1 23.9 /gal. Btu/gal. Btu/gal. Btu/hr-°F-cfh ergy Use - Btu/yee Unoccupied 82,714,600	Btuh Btuh/°F °F. T Balance = below balance t °F below balance °F difference °F difference	emp. ce temp. Fuel Use gal. / yr 825 781		s / BLC)
MPLEME	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs. Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate Proposed infiltration rate	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658 138,000 88.0% 0.018 Ene Occupied 17,514,500 16,573,300	66 5,644 2,213 63.4 5,525 42.1 23.9 /gal. Btu/gal. Btu/gal. Btu/hr-°F-cfh ergy Use - Btu/yee Unoccupied 82,714,600	Btuh Btuh/°F °F. T Balance = below balance t °F below balance °F difference °F difference	emp. ce temp. Fuel Use gal. / yr 825 781		5 / BLC)
MPLEME	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs. Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate Proposed infiltration rate	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658 138,000 88.0% 0.018 Ene Occupied 17,514,500 16,573,300 PD:	66 5,644 2,213 63.4 5,525 42.1 23.9 /gal. Btu/gal. Btu/hr-°F-cfh ergy Use - Btu/yee Unoccupied 82,714,600 78,269,800	Btuh Btuh/°F °F. T Balance = below balance t °F below balance °F difference °F difference	emp. ce temp. Fuel Use gal. / yr 825 781		s / BLC)
MPLEME	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs. Accumulated Hours Avg. OAT (T Set- Avg OAT) (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate Proposed infiltration rate	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658 138,000 88.0% 0.018 Ene Occupied 17,514,500 16,573,300 DE: Matl. & Labor	66 5,644 2,213 63.4 5,525 42.1 23.9 /gal. Btu/gal. Btu/hr-°F-cfh ergy Use - Btu/ye Unoccupied 82,714,600 78,269,800 Quantity	Btuh Btuh/°F °F. T Balance = below balance t °F below balance °F difference °F difference ar Total 100,229,100 94,843,100 Total Savings	emp. ce temp. Fuel Use gal. / yr 825 781		s / BLC)
MPLEME	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs. Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate Proposed infiltration rate Item	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658 138,000 88.0% 0.018 Ene Occupied 17,514,500 16,573,300 DE: Matl. & Labor (\$ / lin ft)	66 5,644 2,213 63.4 5,525 42.1 23.9 /gal. Btu/gal. Btu/hr-°F-cfh ergy Use - Btu/yee Unoccupied 82,714,600 78,269,800 Quantity (lin ft)	Btuh Btuh/°F °F. T Balance = below balance t °F below balance °F difference °F difference Total 100,229,100 94,843,100 Total Savings	emp. ce temp. Fuel Use gal. / yr 825 781		s / BLC)
MPLEMEN	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate Proposed infiltration rate VTATION COST & PAYBACK PERIC Item Weather-stripping	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658 138,000 88.0% 0.018 Ene Occupied 17,514,500 16,573,300 DE: Matl. & Labor (\$ / lin ft)	66 5,644 2,213 63.4 5,525 42.1 23.9 /gal. Btu/gal. Btu/hr-°F-cfh rgy Use - Btu/ye Unoccupied 82,714,600 78,269,800 Quantity (lin ft) 68	Btuh Btuh/°F °F. T Balance = below balance t °F below balance °F difference °F difference ar Total 100,229,100 94,843,100 Total Savings Total \$ 340	emp. ce temp. Fuel Use gal. / yr 825 781		s / BLC)
MPLEME	Q internal gains: BLC: T Balance: Bin Data for Newburgh, 33 hrs., Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate Proposed infiltration rate TATION COST & PAYBACK PERIC Item Weather-stripping Caulking Air Sealing	66 14,368 1,771 57.9 /week 1,073 39.9 26.1 Oil - No. 2 gal. \$ 2.658 138,000 88.0% 0.018 Ene Occupied 17,514,500 16,573,300 DE: Matl. & Labor (\$ / lin ft)	66 5,644 2,213 63.4 5,525 42.1 23.9 /gal. Btu/gal. Btu/hr-°F-cfh ergy Use - Btu/ye Unoccupied 82,714,600 78,269,800 Quantity (lin ft) 68 0	Btuh Btuh/°F °F. T Balance = ° below balance t °F below balance °F difference °F diffe	emp. ce temp. Fuel Use gal. / yr 825 781	\$ 118	s / BLC)

EEM-5	CEC-400097-1	-S - Village of P	hilmont			
NPUT DATA:						
Type & Qty.		1				
Type & Qty.	Present					
Aroos		sq ft total				
Area:						
Perimeter:	20	20				
Infilt. rate:	60	5				
R value:	2.0	2.8				
U factor:	0.500	0.357				
U x Area	11	8				
		Present	Dropocod	Change		
	T-+-1-11A		Proposed	Change		
	Total UA	11	8		Btuh/deg F	
	Infiltration Load	11	1		Btuh/deg F	
		21	8	13	Btuh/deg F	
CALCULATION	NS:					
		Occupied	Unoccupied	Fuel Data	Heating	
Heating Setpo	pint:	66	66	Туре:	Oil - No. 2	
Cooling Setpo		72	72	Units:	gal.	
Q internal gai		14,368	5,644	Unit cost:		
BLC (Btuh/de		1,771	2,213	BTU/unit		
T Balance (°F.		57.9	63.4	Efficiency/ COP:	88.0%	
	 Setpoint - (Q interr		55.7	EFR:	50.070	
i balance – i	Serpoint - (Q interi	iai gailis / DLC/		LLN.		
Bin Mid-Pt.	Occupied Hours	Unoccupied Hours	Change in Occupied Heat Loss	Change in Unoccupied Heat Loss	Heating Savings gal.	
(2.5)	4	23	884	884	0	
2.5	11	52	819	819	0	
7.5	17	40	755	755	0	
12.5	31	119	690	690	1	
17.5	44	229	626	626	1	
22.5	45	274	561	561	1	
27.5	48	317	497	497	1	
32.5	123	651	432	432	3	
37.5	142	679	368	368	2	
42.5	176	616	303	303	2	
47.5	181	639	239	239	2	
52.5	122	600	174	174	1	
57.5	129	635	110	110	1	
62.5	121	651	0	45	0	
67.5	146	546	0	0	0	
72.5	105	351	(6)	(6)	0	
77.5	126	281	(71)	(71)	0	
82.5	86	190	(135)	(135)	0	
87.5	44	100	(200)	(200)	0	
92.5	22	42	(264)	(264)	0	
97.5	0	2	(329)	(329)	0	
102.5	0	0	(393)	(393)	0	
107.5	0	0	(458)	(458)	0	
112.5	0	0	(522)	(522)	0	
	8,760	hours		Energy Savings:	17 ¢ 45	
MPLEMENTA	TION COST & PAYE	BACK PERIOD:			\$ 45	
		Matarial Q Laba				
		Material & Labor	0			
	Item	(\$ / each)	Quantity	Total		
	Rear Door	\$ 1,500	1	\$ 1,500		
				\$ 0		
				\$ 0		
	Implementation Co	at.	\$ 1,500	= 33.2 year pay	h a al i	

EEM-6	CEC-400097-1-S	- Village of Ph	nilmont			
		•		Type:	Oil - No. 2	
				Units:		
				Unit cost:		/gal.
			Hea	at Content of Fuel		Btu/gal.
				oustion Efficiency:	88%	
DATA:				/		
		Occupied	Unoccupied			
	T Setpoint:	66	66	degrees F		
	Q internal gains:	14,368	5,644	Btuh		
	BLC:	1,771	2,213	Btuh/degree F		
	T Balance:	, 57.9	63.4	degrees F		
	T Balance = T Setpoir		ns / BLC)			
Glazing Info	rmation					
		Single pane wind	ows in the	double glazed wi	ndows in the	
	Present Conditions	firehouse with lea		Village Office wit		
	Present Area:	100	sq ft	, , , , , , , , , , , , , , , , , , ,	sq ft	
	U factor:		Btuh/sq ft-deg F		Sq ft Btuh/sq ft-deg F	
			feet		feet	
	Crack Length: Present Infiltration:		reet cfh	60		
	Present Inflitration:		-			
	Proposed Conditions	Double pane se	aled windows	new weatherst	ripping	
	D		<i>c</i> ,		C.	
	Proposed Area:		sq ft		sq ft	
	New U factor:		Btuh/sq ft-deg F		Btuh/sq ft-deg F	
	New Crack Length:		feet		feet	
	Proposed Infiltration:	5	cfh	5	cfh	
	Bin Data for Newbu	rgh, 33 hrs./week	(Average	
					O.A. Temp	Temp
				Accum	below	Difference
		T Setpoint	T Balance	Hours	T Balance	(T Set- Avg OAT)
	Occupied	66	57.9	1,073	39.9	26.1
	Unoccupied	66	63.4	5,525	42.1	23.9
CALCULATIC						
	Conduction Savings					
	Infiltration Savings =					Temp Difference
	Energy Cost Savings	 Energy Savings 	/ Conversion Fac	ctor) x (Unit cost /	Efficiency)	
		Conduction	Infiltration	Total	Total Annual	Energy
		Savings	Savings	Savings	Fuel Savings	Cost Savings
	Winter	(Btu/year)	(Btu/year)	(Btu/year)	(gal./year)	(\$/year)
	Occupied	2,544,000	2,514,000	5,058,000	42	\$ 111
	Unoccupied	12,016,000	11,874,000	23,890,000	197	\$ 523
	Annual Savings:	14,560,000	14,388,000	28,948,000	238	\$ 634
IMPLEMENT	ATION COST & PAYB	ACK PERIOD:				
		Material & Labor				
Item			Quantity	Total		
Double Pane	e Windows (\$/sf)	\$ 45	100	\$ 4,486		
Weatherstri		\$ 5	46	\$ 230		
		Implementation	Cost	\$ 4,716	= 7.4 year pay	hack
		implementation	CU3L.	Υ, ΤΟ	/ / year bar	

CALCU		NS TO INS	ULATE HEAT	ING AND	DOMESTIC	HOT WAT	FER PIPES		
EEM-7	CEC-4	00097-1-S -	· Village of Phi	Imont					
Input Data					T	11-24-2	11-11-11-1-1	DTU (F (() = 1 = 1 = 1
	Fuel Info	ormation			Type:	Units:	Unit cost:	BTU/unit	Efficiency
			H	eating System		gal.	\$ 2.658	138,000	88%
				DHW System	Electricity	kwh	\$ 0.140	3,412	100%
					Type #1	Type #2			
	Fluid				Hot Water	DHW			
	Pipe Ma	torial			Bright Copper				
	FIPE IVIO	O.D., inches (d)		2.00	0.75			
		Total Length,			130	20			
	Eluid To		ide Pipe, °F (Ts)		130	115			
		t Temperature			65	65			
		Operating Hou			782	200			
	Annual		n Thickness, inches						
			uctivity - "k" (Btu-in/	/hr_ca ft_°E)	1.5 0.250	1.0 0.260			
Heat Loss -	Baro Di				0.230	0.200			
fieat Loss -	C factor				1.016	1.016			
		ty based on pi	ino motorial		0.08	0.44			
		Radius Pipe,			1.00	0.44			
	Outside	Raulus Pipe,	inches (Ri)		1.00	0.56			
	h conve	ction. Btu/hr -	s.f. pipe surface a	rea -°F	1.08	1.35			
			.f. pipe surface are		0.09	0.50			
	h total				1.17	1.85			
		a, sq ft/lin ft c	of nine		0.523	0.196			
		Btu/hr-lin ft	, pipe		28	18			
Heat Loss -		•							
		Radius Insula		•	2.50	1.38			
			ter area of insulat	ion	4.9	7.3			
		on Area - sq ft,	/lin ft of pipe		1.3	0.7			
	Q insul,	Btu/hr-lin ft			6.4	5.2			
Avoided Er	orgylo								
Avolueu El		s Loss - mmBtu	hoor		2.8	0.1			
	-	d Loss - mmB			0.7	0.1			
		Loss - mmBti			2.2	0.0			
		2000	.,,			012			
Total Avoid	ded Fuel	Consumption							
		18	15	Units Saved	18	15			
		Oil - No. 2	Electricity	y Fuel Type	Oil - No. 2	Electricity			
			\$ 49	\$/year	\$ 47	\$ 2			
Formulae:									
Based or			nentals Handbook						
			/d)^0.2}x{(1/						
			ity x 0.1713 x 10 ⁴	• -8 x [(Ta + 46	50) ^ 4 - (Ts +4	60) ^ 4]} / (Ta -	- Ts)		
	Q bare =	= h total x Pipe	e Area x (Ts - Ta)						
	Q i = (T	s - Ta) / { [Rs x	((ln (Rs / Ri)] / k	}					
	Q insul :	= Q i x Insul Ar	ea						
	Total Av	oided Consum	nption = (Q bare - (Q insul) x Tota	l length of pipe	e x Annual Ope	erating Hours		
Dauhashr				,			0		
Payback Pe	eriod:	Implementat	in Crat	\$ 1,130	= 22.9 years				

EEM-8	CEC-400097-1-S - Vi	illage of Ph	ilmont			
NPUT DATA:						
Present Annua	al Heating Fuel Consumption	on:	2,376	gal.s		
	Building Served by Boiler		100%	-		
	Boiler Fuel Use		2,376	gal.s		
	Fuel Data	Present		Proposed		
	Туре:	Oil - No. 2		Oil - No. 2		
	Units:	gal.		gal.		
	Unit cost:	\$ 2.658	/gal.	\$ 2.658	/gal.	
	BTU/Unit	138,000	Btu/gal.	138,000	Btu/gal.	
	Boiler Type	Present		Proposed		
	Boiler Firing Rate		kBtuh Input		kBtuh Input	
	Combustion Efficiency	88.0%			annual avg.	
	Jacket Losses		of capacity		of capacity	
	Boiler Capacity		kBtuh Output		kBtuh Output	
	Off-cycle Flue Losses		of capacity		of capacity	
	Boiler is hot when OAT<	65		65		
	Hours/Yr. Unit is Hot	5,288		5,288		
	Off-Cycle Hours/Year	4,007			hrs.	
	Standby Losses		MMBtu		MMBtu	
	Off-Cycle Flue Losses		MMBtu		MMBtu	
	Useful Heat Output	253	MMBtu	253	MMBtu	
	S:					
	Losses = Boiler kBtuh Out	out x 1000 x %	6 Off-Cycle Flu	e Losses x Hrs O	ff-Cycle per Yea	r / 1,000,0
-	- Boiler kBtuh Output x 10 =		-			
	utput = Htg Fuel Use x BTL			•		- Jacket Lo
	ual Fuel Consumption =	•			-	
-	ndby Losses + Useful Heat	Output) / Pro	posed Efficien	cy x 1,000,000 /	BTU per Unit	
-					-	
			Annual Fuel		Annual	
			Consumption		Cost	
	Present:		2,376		\$ 6,315	
	Proposed:		2,047		\$ 5,441	
	Annual Savings:		329	gal.	\$ 874	
	TION COST & PAYBACK PE					
	HON COST & PATDACK PE					
	Item	Quantity	Material	Labor	Total	
	New Boiler	1	\$ 9,000	\$ 5 <i>,</i> 000	\$ 14,000	
		0	\$ 0	\$0	\$ 0	
	Totals:				\$ 14,000	
				1		
	Implementation Cost			\$ 14,000	= 16 year payl	oack
	Annual Energy Savings			\$ 874		

EEM-9	TIONS TO REPLACE CEC-400097-1-S - Villa						
	020-400007-1-0 - 4110	ige of Finnine					
INPUT DATA				kWh:	\$ 0.140	per kWh	
				Demand:		per kW	
			mo	nths /yr. demand:			
				cidence Factor CF:			
			Com		0.00		
Location or Ar	rea Served	Village Office	Court	Firehouse			
Unit Tag		Split System	Wall	Wall			
tons/unit		1.9	1.0	0.4			
# of Units		1	1	1			
Unit Type (AC	or HP)	AC	AC	AC			
EFLH cool		574	574	574			
EFLH heat		574	574	574			
Present Efficie	ancy FER *	11.0	9.0	11.0			
Present Efficie		16.4	11.0	11.0			
Present Heatin	•	10.7	11.0	11.4			
Air Side Econo	-						
Proposed Effic	ciency FER **	14.0	11.0	11.0			
		14.0	11.6	11.6			
Proposed Effic	ciency SEER **	20.0	15.7	15.7			
Air Side Econo		n/a	n/a	n/a			
	avings kwh/ton	_	-	_			
CALCULATION	IS:						Sum
Present kwh/y		805	626	256			1,68
Present kwh/y	-	-	-	-			_,
Proposed kwh		660	439	183			1,282
	n/year Heating	-	-	-			
op ob ca	Efficiency $\Delta kWh =$	145	187	73			406
	Economizer ΔkWh =	-	-	-			(
	Demand Savings						
	Present kW (peak)	1.7	1.1	0.4			3.3
	Proposed kW (peak)						2.
	$\Delta kW =$	1.3	0.8	0.3	-		
	Δκνν =	0.4	0.2	0.0			0.0
FORMULAE:							
	ndard Approach for Estimatin	g Energy Savings	-Residential Mul	ti-Family and Com	mercial/Indust	rial Measures	
New Tork Star	$\Delta kWh eff cooling =$					that weasures.	
	$\Delta kWh eff heating =$						
			x kwh economize		-	nual Appendix J)	
			x (12/EERbase-1				
			ling/kWpeak cooli		mizer (from Ar	nendix G)	
	* Present EER and SEER are						
	** Proposed EER and SEER a		SECCC (IECC-201	5)			
F	Existing Energy Consumption	1 687	kwh/yr	3 1	kW peak		
	oposed Energy Consumption		kwh/yr		kW peak		
	Annual Energy Savings		kwh/yr		kW peak		
	A MAGE LICITY Savings	-00		0.0	peak		
IMPLEMENTA	TION COST AND PAYBACK P	ERIOD:					
	Replacement cost is estima	ted at	\$ 2,000	per installed ton	of capacity		
			÷ 2,000	per instance ton	capacity		
	Implementation Cost		\$6,667	= 73.6 years p	avback		
	Annual Energy Savings		\$91	, 5.0 yeurs p			

		S TO TURN OFF UNUSED R		IORS		
EEM-10	CEC-40	0097-1-S - Village of Philmor	IT			
				Electricity		
			Unit cost:	-	/kwh	
INPUT DAT	<u>A:</u>				-	
054	cu.ft.	Tuno	Present	wh per year eac Proposed		Annual kWl
Qty 1	19	Type Refrigerator w/ top freezer	569	0 Proposed	Savings 569	Savings 569
T	19	Reingerator w/ top neezer	203			
				0	0	(
				0	0	(
				0	0	(
						56
CALCULATIO	ONS:					
			Annual		Annual	
			Energy use		Energy cost	
	Present:		569	kwh	\$ 80	
	Proposed	:	0	kwh	\$ 0	
	Annual Sa	avings:	569	kwh	\$ 80	per year
IMPLEMEN	τατιον ος)CT·				
	Cu.Ft.	Description	Qty	Material	Labor	Total
	19	Refrigerator w/ top freezer	1	\$ 0	\$ 0	\$ (
	0	0	0	\$ 0	\$ 0	\$ (
	0	0	0	\$ 0	\$ 0	\$
	0	0	0	\$ 0	\$ 0	\$
		Totals:	1			\$
PAYBACK:						
	Implementation Cost		\$0	= 0 year payba	ck	
	Annual E	nergy Savings	\$ 80			

BE-1	CEC-400097-1-S - Villa	ge of Philmo	nt			
			Fuel Informatio	<u>n</u>		
Building Information	Assembly			Heating	Cooling	
Location	Poughkeepsie	Climate Zone 5	Туре:	Multiple	Electricity	
Portion of Building HP will serve:	100%		Units:	mmBtu	kwh	
Building Heating Load (BHL)	151,609	BTU/h	Unit cost:	\$ 19.653	\$ 0.140	/kwh
Building Cooling Load (BCL)	76,420	BTU/h	BTU/unit	1,000,000	3,412	/kwh
BEFLHheating	1,947	Hours	Heating Eff.	88%	\$ 10.96	/kW
BEFLHcooling	248	Hours	CO2	0.00	1.16	lbs/unit
Existing System						
Is baseline heating system electric?	N					
s baseline heating system fossil fuel?	Y					
Present Heating System	Boiler, Steam, Oil Fired < 300) kBTU/h				
Present Cooling System	Split System – Air Conditioner (<65 kBTU/h)				
% of Portion to be served by GSHP that	is presently cooled	100%				
Proposed System						
GSHP Loop Type	Closed Loop	GLHP				
GSHP Compressor Type	Variable-Speed	0.40	Capacity Ratio			
Estimated Pump Power	60 watts per ton					
Pumping Control Strategy	Variable					
Heating Capacity	160,000	BTU	rating condition	า		
Energy Efficiency Ratio Full Load	17.0	EER GLHP,full	77	° EWT		
Energy Efficiency Ratio Part Load	22.0	EER GLHP,part	68	° EWT		
Heating COP Full Load	3.6	COP GLHP,full	32	° EWT		
Heating COP Part Load	4.1	COP GLHP,part	41	° EWT		
Adjusted Efficiency Values	Baseline	Energy Efficient				
EERseason, baseline		18.51	EERseason,ee			
EERpeak, baseline		17.0	EER GSHP, full,	ee		
COPseason, baseline		3.60	COPseason,ee			
FElecHeat						
EFFbaseline		0.69	CF			
FFuelHeat	1.00					
					Savings	Savings
	Baseline	Energy Efficient		Units	\$	CO2 Lbs/yr
Cooling Electric Use (kWh/yr.)	1,457	1,023		kWh		
Heating Electric Use (kWh/yr.)	0	24,004	(24,004)			
Total Electric Use (kWh/yr.)	1,457	25,028	(23,570)		(\$ 3,300)	(27,342
Peak Demand (kW)	4.7	3.1		kW	(\$ 348)	
Fossil Fuel Energy Use (MMBTU)	335	0	335	MMBtu		
Fossil Fuel Energy Use : mmBtu	335	0	335	mmBtu	\$ 6,592	(
Annual Energy Costs	\$ 6,989	\$ 4,045	\$ 2,944		\$ 2,944	(27,342
Estimated Project Cost	\$ 14,568	per ton =	\$ 184,050	63	year payback	

BE-2	TIONS TO INSTALL CEC-400097-1-S - Vil				
DE-2	CEC-400097-1-3 - VII	lage of Phillino	111		
NPUT DATA:					
		Present Fuel		Proposed Fuel	
	Fuel:	Electricity		Electricity	
	Units:	kwh		kwh	
	Fuel Cost:		per kwh		per kwh
	BTU / unit:	3,412	Btu per kwh	3,412	Btu per kwh
	Consumption:	Present		Proposed	
	Hot Water Usage:		Gallons/person		Gallons/person
	Number of persons:		(estimate)		(estimate)
	Days of Usage:		per year		per year
	Average inlet water Temp:		degrees F		degrees F
	Average hot water temp:	115	degrees F	115	degrees F
Storage Tank I	Losses:	Present Tank		Proposed Tank	
	Tank U factor:		Btu/SF/Hour		Btu/SF/Hour
	Height of Tank:		inches		inches
	Diameter of Tank:		inches		inches
			gallons/tank		gallons/tank
	# of Tanks		Qty.		Qty.
	Hours Tank is Hot:	8,760		8,760	
	Water Temperature:		Deg. F.	125	
	Ambient Temperature:		Deg. F.	65	
			0		
Recirculation I	Losses:	0.0%	of boiler capacity =	0	BTUh
		8,760	hours/year	8,760	hours/year =
Dailan laakat G					
Boiler Jacket &					
	Burner Input		BTUH		BTUH
	Efficiency:	92.0%		400.0%	
	Boiler Output Capacity		BTU output		BTU output
	Jacket & Flue Losses:	0.0%	of boiler capacity	0.0%	of boiler capacity
	Boiler is Hot:	8,760	hours/year	8,760	hours/year =
	IC.				
CALCULATION	<u>15:</u>	Drocont		Dropocod	
		Present		Proposed	
	Consumption Energy:		BTU output rqd/yr		BTU output rqd/y
	Tank Energy Losses:	1,729,995		1,729,995	
	Recirculation Losses:	0	BTU/year	0	BTU/year
	Boiler Jacket Losses:	0	BTU/year	0	BTU/year
	Output BTU/Year	1,999,572		1,999,572	
	Annual Fuel Consumption	637	kwh	147	kwh
	Demand		billed kW /yr.	0	kW
	Annual Fuel Cost			\$ 21	
	Annual Savings:		kwh		per year
		0		÷-•	,
		0	billed kW /yr.		
ΙΜΡΙ ΕΜΕΝΤΛ	TION COST & PAYBACK PER	-	SINCA KWY / yr.		
tem		Quantity	Matl. & Labor Cost	Total	
		1	\$ 4,500	\$ 4,500	
		_			- 61 0
		Implementation	CUSI:	\$ 4,500	= 61.9 year pa

Appendix D

Assumptions/Data Used to Develop Energy and Dollar Savings Figures

Building and Occupancy Information

Floor Area:	6 060	square feet		Avg. # of	Heating	Cooling	% of base elec	tricity use resu	lting in internal
FIOOT Area:	6,960	square leet		occupants	Setpoint	Setpoint		heat gains	
			days /occupied	3	66	72	days	100%	
		nig	hts/unoccupied	0	66	72	nights	100%	
			# of computers	5		_			
Interior lighting,	people and occu	upied levels of i	nternal loads occ	cur for	32.5	32.5 hours per week			
	Electricity use at night is					of the usual el	ectricity use du	ring day period	ls
	(This results in an average daytime					of the peak me	etered kW)		
Heating Syste	m Informatio	on							
		%	of bldg. served	COP heat	EER	Heat kBTUH	Heating Fuel	Efficiency	
Primary system:	Non-Condensir	ng Boiler	97%	0.88	12.00	256	Oil - No. 2	88.0%	Et
Secondary:	Air Source Hear	t Pump	3%	3.80	12.50	29	Electricity	380.0%	Et
	50%	of building is a	ir conditioned	Does the coo	ling system hav	/e economizer?	No		
				Fuel					
Describe the dire	oct outsido air a	r control make	un air system:	ruer		Eff.		EER for DOAS	
Describe the dife			-up an system.		cfm outside ai			LER IOI DOAS	
					hours / week	in, running	heat recovery	officionay	
Domosticlist	Matar				nours / week		neat recovery	enciency	
Domestic Hot	water	Fuel	Efficiency						
DHW system ene	ergy type	Electricity	92%	ls the	re a pump to ci	rculate DHW?	Yes		
Hot Water usage	<i>e. .</i>	0.5	gallons per	person	/ day for	3	persons on	365	days/year
not water usage	. 15	0.5	Banons per	person		5	persons on	505	uu y 3/ y Cai
weather & Sc	Weather & Schedule Information:								

Select nearest weather station for bin data:	NEWBUR	GH	for TRM:	Poughkeepsie
Base temperature for heating degree days:	65 °F. yields	6,359 HDD base65	for TRM:	Assembly
Base temperature for cooling degree days:	70 °F. yields	478 CDD base70	for TRM:	AC with Gas Heat

Present Schedule for Occupied/Day HVAC setpoints

Day of week		Start	End	Hours
Sun	1	12:00 AM	12:00 AM	-
Mon	2	7:30 AM	2:30 PM	7.0
Tue	3	7:30 AM	2:30 PM	7.0
Wed	4	7:30 AM	2:30 PM	7.0
Thu	5	7:30 AM	2:30 PM	7.0
Fri	6	7:30 AM	12:00 PM	4.5
Sat	7	12:00 AM	12:00 AM	
Newburgh, 33 hrs.	/week			32.5
				135.5

Proposed Schedule for Occupied/Day HVAC setpoints

Day of week	Start	End	Hours
1	12:00 AM	12:00 AM	-
2	7:30 AM	2:30 PM	7.0
3	7:30 AM	2:30 PM	7.0
4	7:30 AM	2:30 PM	7.0
5	7:30 AM	2:30 PM	7.0
6	7:30 AM	12:00 PM	4.5
7	12:00 AM	12:00 AM	-
Newburgh, 33	hrs./week		32.5

		Present	Present		
Mid Point	Enthalpy all hours	Occupied Hours	Unoccupied Hours	Occ enthalpy	Unocc enthalpy
-2.5	0.1	4	23	0.2	0.0
2.5	1.5	11	52	1.4	1.5
7.5	2.6	17	40	2.6	2.7
12.5	4.0	31	119	3.7	4.0
17.5	5.5	44	229	5.4	5.5
22.5	7.2	45	274	7.1	7.3
27.5	8.8	48	317	8.8	8.8
32.5	10.9	123	651	10.6	10.9
37.5	12.6	142	679	12.5	12.7
42.5	14.9	176	616	14.5	15.0
47.5	17.1	181	639	16.5	17.3
52.5	19.5	122	600	18.8	19.6
57.5	21.6	129	635	21.0	21.7
62.5	24.7	121	651	23.3	25.0
67.5	28.0	146	546	26.2	28.4
72.5	30.1	105	351	28.1	30.7
77.5	30.8	126	281	29.8	31.3
82.5	33.4	86	190	32.9	33.6
87.5	35.4	44	100	36.1	35.1
92.5	39.4	22	42	39.8	39.2
97.5	39.9	0	2		39.9
102.5	0.0	0	0		
107.5	0.0	0	0		
112.5	0.0	0	0		
		1,723	7,037		

ESTIMATE OF BUILDING LOAD COEFFICIENT & TRUE-UP TO BILLED ENERGY USE

CEC-400097-1-S - Village of Philmont Village Hall

124 Main Street, Philmont, NY 12565

Building Information					
Width (typical)	39	feet	Building Floor Area	6,960	sq. ft.
Equivalent Length	90	feet	Roof Area	3,480	sq. ft.
Number of Floors	2.0	floors	Gross Wall Area	5,147	sq. ft.
Avg. Floor to Floor Height	10	feet per floor	Building Volume	69,600	cubic feet
Roof or Ceiling rise is	0	feet in 12' run			

Estimate of Conductive Heat Loss

Estimate of	conductive	licat Loss					
						U x A	% of BLC
<u>Surface</u>			Area	<u>R-value</u>	<u>U Factor</u>	<u>Btuh/deg. F.</u>	w/o ventilation
Roof	n/a		3,480	19.0	0.053	183	8%
Walls	73.0%	of GWA	3,759	5.0	0.200	752	34%
Glazing 1	15.0%	of GWA	772	2.0	0.500	386	17%
Glazing 2	1.9%	of GWA	100	0.86	1.163	116	5%
Doors 1	4	9x12 doors	432	4.0	0.250	108	5%
Doors 2	4	3x7 doors	84	2.0	0.500	42	2%
	Total Exterio	or Surface Area	8,627	sq.ft.		1,587	72%

Est. Infiltration Rate Est. Infiltration Rate	Occupied Unoccupied	ACH 0.50 0.50	equiv. cfm 580 580	Btuh/deg. F. 626 626	BLC (without ventilation) 1,771 Btuh/deg. F. Occupied 2,213 Btuh/deg. F. Unoccupied
Est. Ventilation Rate Est. Ventilation Rate	Occupied Unoccupied	cfm 0	Fraction 100% 100%	Btuh/deg. F. 0 0	Total BLC with Ventilation 1,771 Btuh/deg. F. Occupied 2,213 Btuh/deg. F. Unoccupied
Heat Gain Estimation Estimated Solar Gain	20%	0	0	occupied periods	s will be met by solar gains

		kW	# People	Total BTUH	Hours/wk.
Loads & People	Occupied	4.0	3	14,368	32.5
	Unoccupied	1.7	0	5,644	135.5

Heat Loss Study - continued

CEC-400097-1	•				Fuel Data	Heating	Cooling	
Village Hall					Type:	Oil - No. 2	Electricity	Economizer?
124 Main Stre	et, Philmont,	NY 12565		-	Units:	gal.	kwh	No
			Current		Unit cost:	\$ 2.658	\$ 0.140	
Heating T Setp	point:	Occupied	66	deg. F.	BTU/unit	138,000	3,412	
		Unoccupied	66	deg. F.	Nom. Eff, COP	0.88	3.517	СОР
Cooling T Setp	oint:	Occupied	72	deg. F.	Avg. Eff, COP	0.92	4.56	Avg. COP
Unoccupi		Unoccupied	72	deg. F.			12.0	EER
HVAC Schedule Occ		Occupied	33	Hrs. per week			50%	of bldg. cooled
		Unoccupied	136	Hrs. per week			DOAS En	ergy Use
Q internal gaiı	ns:	Occupied	14,368	Btuh			0	cfm
		Unoccupied	5,644	Btuh			0%	heat recov. Eff.
Q internal gaiı	ns:	Schedule	33	Hrs. per week			Heating	0
BLC:		Occupied	1,771	Btuh/deg. F.			0	
		Unoccupied	2,213	Btuh/deg. F.			0%	eff.
		•		1			0.00	COP cool
Current		Newburgh, 33	hrs /wook				0	hrs/week
current		Newburgh, 55	IIIS./ WEEK				0	
	Occupied	Unoccupied	Occ Net Heat	Unocc Net	Heating Fuel	Cooling Energy		DOAS Heating
Bin Mid Pt.	Hours	Hours	Loss BTUH	Heat Loss	Use gal.	kwh	DOAS Hours	kBtu/yr.
	liouis	nouis	2000 01011	BTUH	obe Bail			KB cay yr.
(2.5)	4	23	106,919	145,965	31	0	0	0
2.5	11	52	98,066	134,899	67	0	0	0
7.5	17	40	89,213	123,832	53	0	0	0
12.5	31	119	80,360	112,766	131	0	0	0
17.5	44	229	71,507	101,700	218	0	0	C
22.5	45	274	62,654	90,633	228	0	0	0
27.5	48	317	53,801	79,567	229	0	0	C
32.5	123	651	44,948	68,501	413	0	0	0
37.5	142 176	679	36,095	57,434	<u>363</u> 275	0	0	0
42.5	176	616 639	27,241 18,388	46,368 35,302	275	0	0	C
52.5	181	600	9,535	24,235	129	0	0	0
57.5	122	635	682	13,169	70	0	0	0
62.5	125	651	002	2,103	11	0	0	0
67.5	121	546	(6,400)	2,105	0	24	0	0
72.5	146	351	(19,604)		0	167	0	0
77.5	126	281	(27,155)		0	281	0	0
82.5	86	190	(39,655)		0	333	0	0
87.5	44	100	(50,582)		0	253	0	0
92.5	22	42	(66,818)	(67,169)	0	167	0	C
97.5	0	2	(73,856)	(76,420)	0	7	0	0
102.5	0	0	(68,372)	(73,149)	0	0	0	C
107.5	0	0	(77,225)		0	0	0	C
112.5	0	0	(86,078)	(95,281)	0	0	0	C
	8,760	hours			2,431	1,231	DOAS fuel use	C
							DOAS cool use	0

Cross Check Against Historic Consumption

	Historic	Calculated	Difference
Present Annual Heating Fuel Use is	334 mmBTU	335	100% of present fuel use

Appendix E

Clean Heating and Cooling Technology Overview

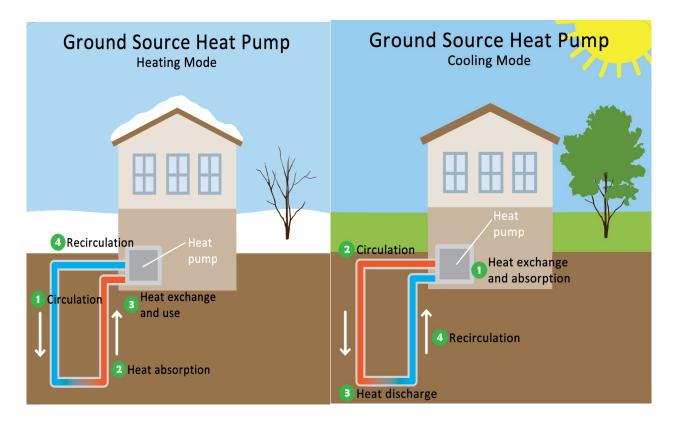
BENEFITS OF CLEAN HEATING AND COOLING (CHC) TECHNOLOGIES

Commercial building owners are becoming increasing aware of how their choice of HVAC system impacts bottom line operating costs and the environment. Most conventional heating systems either burn fuel or convert electricity into heat. CHC technologies, such as heat pumps, are different because they don't generate heat. Instead, they move existing heat energy from outside into your facility, which makes them more efficient since they deliver more heat energy than the electrical energy they consume.

There are many compelling reasons to install a CHC System in commercial buildings.

CHC systems:

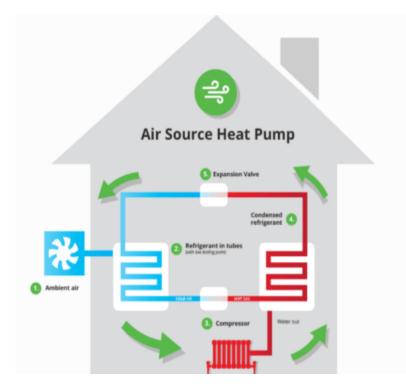
- Can cost less to run than a traditional fossil fuel heating system.
- Integrate well with renewable and resilient building designs
- Offer the highest efficiency and most cost-effective space conditioning for HVAC
- Offer reduced maintenance costs because the exterior equipment is buried underground
- Offers flexible design and installation with many configurations available.
- Provides superior thermal comfort for all seasons.


TYPES OF CLEAN HEATING AND COOLING (CHC) TECHNOLOGIES

What is a Ground Source Heat Pump (GSHP)?

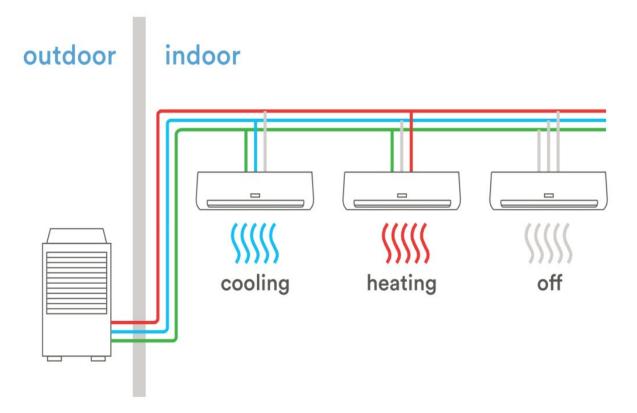
GSHP's are self-contained electrically powered systems that provide heating and cooling more efficiently than other types of conventional HVAC systems. This increase in efficiency is obtained due to the GSHP systems coupling with the earth's relatively stable ground temperature. For example, while the temperature of the of the outside air may vary drastically from summer to winter, the ground temperature remains relatively stable, making it an ideal heat "source" for heating and heat "sink" for cooling.

The GSHP system utilizes an electric vapor compression refrigeration cycle to exchange energy between the building load and a ground coupled loop. When in heating mode, energy is transferred from the low temperature ground loop source to the higher temperature heat sink (the load).


The system reverses during cooling, where the energy is absorbed by the ground loop.

Source: https://www.epa.gov/rhc/geothermal-heating-and-cooling-technologies

What is an Air Source Heat Pump (ASHP)?


An air source heat pump works much like a refrigerator operating in reverse. Outside air is blown over a network of tubes filled with a refrigerant. This warms up the refrigerant, and it turns from a liquid into a gas. This gas passes through a compressor, which increases the pressure. Compression also adds more heat – similar to how the air hose warms up when you top up the air pressure in your tires. The compressed, hot gases pass into a heat exchanger, surrounded by cool air or water. The refrigerant transfers its heat to this cool air or water, making it warm. And this is circulated around your facility to provide heating and hot water. Meanwhile, the refrigerant condenses back into a cool liquid and starts the cycle all over again.

Source: <u>https://www.ways2gogreenblog.com/2017/10/18/a-brief-introduction-to-air-source-heat-pumps/</u>

What is a Variable Refrigerant Flow (VRF)?

VRF systems use heat pumps or heat recovery systems to provide heating and cooling for all indoor and outdoor units without the use of air ducts. With a VRF system, your building will have multiple indoor units utilized by a single outdoor condensing unit, either with a heat pump or heat recovery system. A VRF HVAC system can heat and cool different zones or rooms within a building at the same time. If the appropriate VRF system is selected, building occupants have the ability to customize the temperature settings to their personal preferences. VRF equipment can be used in conjunction with a wide range of heating and cooling products. This means that a VRF system can be scaled to meet the climate control needs.

Source: <u>https://be-exchange.org/tech_primer/tech-primer-variable-refrigerant-flow-vrf-</u> systems/

Appendix F

Energy Savings Summaries

	Ene	ergy Efficiency Measures	GHG Electric Savings			Fuel Savings			\$ Savings & Cost			
EEM #	Measure Status	EEM Description	CO2e Lbs./Year	kWh	kW	Electric Cost Savings	Fuel Type	Fuel MMBtu Savings	Fuel Cost Savings	Total Annual Savings	Install Costs	Simple Payback (years)
EEM-1	R	Interior Lighting Retrofit	1,424	1,928	2.1	\$ 540	Oil - No. 2	(5)	(\$ 96)	\$ 444	\$ 5,954	13.4
EEM-2	R	Improve Temperature Control	8,305	55	0.0	\$8	Oil - No. 2	51	\$ 974	\$ 982	\$ 1,000	1.0
EEM-3	RS	Insulate Building Envelope	19,751	484	0.0	\$ 68	Oil - No. 2	118	\$ 2,269	\$ 2,337	\$ 202,559	86.7
EEM-4	R	Weather-Stripping And Caulking	997	0	0.0	\$ 0	Oil - No. 2	6	\$ 118	\$ 118	\$ 340	2.9
EEM-5	RNE	Install Insulated Doors	382	0	0.0	\$ 0	Oil - No. 2	2	\$ 45	\$ 45	\$ 1,500	33.2
EEM-6	R	Install Double Glazing	5,359	0	0.0	(\$ O)	Oil - No. 2	33	\$ 634	\$ 634	\$ 4,716	7.4
EEM-7	RS	Insulate Heating And Domestic Hot Water Pipes	417	15	0.0	\$ 2	Oil - No. 2	2	\$ 47	\$ 49	\$ 1,130	22.9
EEM-8	NR	Install A More Efficient Boiler	7,393	0	0.0	(\$ 0)	Oil - No. 2	45	\$ 874	\$ 874	\$ 14,000	16.0
EEM-9	NR	Replace Air Conditioners	471	406	0.6	\$ 91		0	\$ O	\$ 91	\$ 6,667	73.6
EEM-10	R	Turn Off Unused Refrigerators	661	569	0.0	\$ 80		0	\$ 0	\$ 80	\$0	0.0
Total of Recommended Measures:			17,127	2,553	2.1	\$ 628		87	\$ 1,675	\$ 2,303	\$ 13,510	5.9

Building Electrification Measures				Savings & Cost								
EEM #	Measure Status	Building Electrification Measure Descriptions	GHG	kWh	kW	Electric Cost Savings	Fuel Type	Fuel MMBtu Savings	Fuel Cost Savings	Total Annual Savings	Install Costs	Simple Payback (years)
BE-1	RS	Install Clean Heating System - Ground Source Heat Pump	28,367	(21,799)	1.6	(\$ 3,400)	Oil - No. 2	329	\$ 6,344	\$ 2,944	\$ 184,050	62.5
BE-2	NR	Install A Heat Pump Water Heater	569	490	0.0	\$ 73		0	\$0	\$ 73	\$ 4,500	61.9
	Total of Recommended Measures: 0			0	0.0	\$0	\$0	0	\$ 0	\$ O	\$ 0	